首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.  相似文献   

2.
BackgroundGastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and chemoresistance is a major cause for its poor prognosis. Long non-coding RNAs (lncRNAs) are associated with cancer chemoresistance. The current study sought to explore the mechanism of lncRNA HNF1A antisense RNA 1 (HNF1A-AS1) in mediating 5-fluorouracil (5-FU) resistance of GC.MethodsqRT-PCR was performed to detect the expression level of HNF1A-AS1 in GC tissues and cells. Abnormal expression of HNF1A-AS1 in GC cells was induced by lentivirus infection. Protein levels of EIF5A2, E-Cadherin, Vimentin and N-Cadherin were detected using western blot. Competitive endogenous RNA (ceRNA) mechanisms were explored through luciferase assays and RNA immunoprecipitation (RIP) assays. Functional experiments of chemoresistance were performed by CCK-8 assays, colony formation assays and flow cytometry with the treatment of 5-FU. Mouse tumor xenograft assays were performed to verify the findings in vivo.ResultsThe findings showed HNF1A-AS1 was significantly upregulated in GC tissues especially in chemoresistance group. Findings from in vitro and in vivo experiments showed HNF1A-AS1 increased cell viability and proliferation, repressed apoptosis and promoted xenograft tumors growth in the presence of 5-FU. Mechanistic studies revealed HNF1A-AS1 promoted chemoresistance by facilitating epithelial mesenchymal transition (EMT) process through upregulating EIF5A2 expression and HNF1A-AS1 acted as a sponge of miR-30b-5p.ConclusionsThe findings from the current study showed HNF1A-AS1 promoted 5-FU resistance by acting as a ceRNA of miR-30b-5p and promoting EIF5A2-induced EMT process in GC. This indicates that HNF1A-AS1 is a potential therapeutic target for alleviating GC chemoresistance.  相似文献   

3.
MicroRNA-567 (miR-567) plays a decisive role in cancers whereas its role in non-small cell lung cancer (NSCLC) is still unexplored. This study was therefore planned to explore the regulatory function of miR-567 in A549 NSCLC cells and investigate its possible molecular mechanism that may help in NSCLC treatment. In the current study, miR-567 expression was examined by quantitative real time-polymerase chain reaction (qRT-PCR) in different NSCLC cell lines in addition to normal cell line. A549 NSCLC cells were transfected by miR-567 mimic, miR-567 inhibitor, and negative control siRNA. Cell proliferation was evaluated by MTT and 5-bromo-2′deoxyuridine assays. Cell cycle distribution and apoptosis were studied by flow cytometry. Bioinformatics analysis programs were used to expect the putative target of miR-567. The expression of cyclin-dependent kinase 8 (CDK8) gene at mRNA and protein levels were evaluated by using qRT-PCR and western blotting. Our results found that miR-567 expressions decreased in all the studied NSCLC cells as compared to the normal cell line. A549 cell proliferation was suppressed by miR-567 upregulation while cell apoptosis was promoted. Also, miR-567 upregulation induced cell cycle arrest at sub-G1 and S phases. CDK8 was expected as a target gene of miR-567. MiR-567 upregulation decreased CDK8 mRNA and protein expression while the downregulation of miR-567 increased CDK8 gene expression. These findings revealed that miR-567 may be a tumor suppressor in A549 NSCLC cells through regulating CDK8 gene expression and may serve as a novel therapeutic target for NSCLC treatment.  相似文献   

4.
We aimed to determine the functional role of the miRNA, which affects drug sensitivity to 5-FU in oral squamous cell carcinoma (OSCC), using two types of 5-FU-resistant and parental OSCC cell lines. MiRNA microarray data showed that miR-30a was significantly upregulated in two resistant cell lines. Therefore, we investigated the effects and molecular mechanism of miR-30a on 5-FU sensitivity. Stable overexpression of miR-30a in parental OSCC cells decreased cell proliferation and attenuated drug sensitivity to 5-FU. Cell cycle analysis indicated that miR-30a overexpression increased the proportion of G1 phase cells and decreased the proportion of S phase cells. MiR-30a knockdown using siRNA reversed the effects of miR-30a overexpression. DNA microarray analysis using miR-30a-overexpressing cell lines and a TargetScan database search showed that cyclin E2 (CCNE2) is a target of miR-30a. A luciferase reporter assay confirmed that a miR-30a mimic interacted with the specific binding site in the 3' UTR of CCNE2. CCNE2 knockdown with siRNA in OSCC cells yielded decreased drug sensitivity to 5-FU, similar to miR-30a overexpressing cells. These findings suggest that miR-30a in OSCC may be a novel biomarker of 5-FU-resistant tumors, as well as a therapeutic target for combating resistance.  相似文献   

5.
BackgroundThe elevated Cyclin B1 expression contributes to various tumorigenesis and poor prognosis. Cyclin B1 expression could be regulated by ubiquitination and deubiquitination. However, the mechanism of how Cyclin B1 is deubiquitinated and its roles in human glioma remain unclear.MethodsCo-immunoprecipitation and other assays were performed to detect the interacting of Cyclin B1 and USP39. A series of in vitro and in vivo experiments were performed to investigate the effect of USP39 on the tumorigenicity of tumor cells.ResultsUSP39 interacts with Cyclin B1 and stabilizes its expression by deubiquitinating Cyclin B1. Notably, USP39 cleaves the K29-linked polyubiquitin chain on Cyclin B1 at Lys242. Additionally, overexpression of Cyclin B1 rescues the arrested cell cycle at G2/M transition and the suppressed proliferation of glioma cells caused by USP39 knockdown in vitro. Furthermore, USP39 promotes the growth of glioma xenograft in subcutaneous and in situ of nude mice. Finally, in human tumor specimens, the expression levels of USP39 and Cyclin B1 are positively relevant.ConclusionOur data support the evidence that USP39 acts a novel deubiquitinating enzyme of Cyclin B1 and promoted tumor cell proliferation at least in part through Cyclin B1 stabilization, represents a promising therapeutic strategy for tumor patients.  相似文献   

6.
Anaplastic thyroid cancer (ATC) is one of the most lethal types of human tumors. Lenvatinib can improve the disease control and prognosis in patients with ATC. However, there is an unmet need to develop a therapeutically safer and non-invasive strategy that improves the efficacy of lenvatinib for advanced ATC tumors, which grow larger close to the skin. We previously demonstrated that the topical application of an ointment incorporating tumor suppressive microRNA (TS-miR), miR-634, is a useful strategy as a TS-miR therapeutics. Here, we found that the overexpression of miR-634 synergistically increased lenvatinib-induced cytotoxicity by concurrently downregulating multiple genes related to cytoprotective processes, including ASCT2, a glutamine transporter, in ATC cell lines. Furthermore, the topical application of a miR-634 ointment on subcutaneous tumors effectively augmented the anti-tumor effects of lenvatinib in an ATC xenograft mouse model. Thus, we propose topical treatment of a miR-634 ointment as a rational strategy for improving lenvatinib-based therapy for ATC.  相似文献   

7.
8.
The cancer/testis antigen lactate dehydrogenase-C4 (LDHC) is a specific isoenzyme of the LDH family that regulates invasion and metastasis in some malignancies; however, little is known regarding its role in progression of lung adenocarcinoma (LUAD). Thus, we investigated LDHC expression by immunohistochemistry, and analyzed its clinical significance in 88 LUAD specimens. The role and molecular mechanisms subserving LDHC in cellular proliferation, migration, and invasion were explored both in vitro and in vivo. As a result, we found that high LDHC expression was significantly correlated with clinicopathological features of aggressive LUAD and a poor prognosis. Overexpression of LDHC induced LUAD cells to produce lactate and ATP, increased their metastatic and invasive potential—, and accelerated xenograft tumor growth. We further demonstrated that overexpression of LDHC affected the expression of cell proliferation-related proteins (cyclin D1 and c-Myc) and epithelial-mesenchymal transition (EMT)-related proteins (MMP-2, MMP-9, E-cadherin, Vimentin, Twist, Slug, and Snail) both in vitro and in vivo. Finally, excessive activation of LDHC enhanced the phosphorylation levels of AKT and GSK-3β, revealing activation of the PI3K/Akt/GSK-3β oncogenic-signaling pathways. Treatment with a PI3K inhibitor reversed the effects of LDHC overexpression by inhibiting cellular proliferation, migration, and invasion, with diminished levels of p-Akt and p-GSK3β. PI3K inhibition also reversed cell proliferation-related and EMT-related proteins in LDHC-overexpressing A549 cells. In conclusion, LDHC promotes proliferation, migration, invasion, and EMT in LUAD cells via activation of the PI3K/Akt/GSK-3β pathway.  相似文献   

9.
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.  相似文献   

10.
Hyperglycosylated human chorionic gonadotropin (H-hCG) is secreted from choriocarcinoma and contains a core2 O-glycan formed by core2 β1,6-N-acetylglucosaminyl transferase (C2GnT). Choriocarcinoma is considered immunogenic as it is gestational and contains paternal chromosomal components. Here we examined the function of C2GnT in the evasion of choriocarcinoma cells from natural killer (NK) cell-mediating killing. We determined that C2GnT is highly expressed in malignant gestational trophoblastic neoplasms. C2GnT KO downregulates core2 O-glycan expression in choriocarcinoma cells, which are more efficiently killed by NK cells than control cells. C2GnT KO cell containing tumor necrosis factor-related apoptosis inducing ligand have lower viability than control cells. Additionally, poly-N-acetyllactosamine in core2 branched oligosaccharides on MHC class I-related chain A (MICA) and mucin1 (MUC1) is significantly reduced in C2GnT KO cells. Meanwhile, the cumulative survival rate of nude mice inoculated with C2GnT KO tumors was higher than that of the control group. These findings suggest that choriocarcinoma cells may escape NK cell-mediated killing via glycosylation of MICA and MUC1.  相似文献   

11.
12.
13.
《Reproductive biology》2023,23(1):100710
Postpartum endometritis is known to be associated with ovarian dysfunction in cows. Lipopolysaccharide (LPS) generated by Gram-negative bacteria is recognized by toll-like receptor 4 (TLR4), which leads to an inflammatory response by the generation of cytokines such as tumor necrosis factor-α (TNF-α) and interleukins. In this study, we investigated the effect of endometrial LPS on granulosa cell functions during early follicular development in cows. Uteri and follicles were obtained from a slaughterhouse and classified into either clinical endometritis (CE) or normal groups by vaginal mucus test. TLR4 mRNA and protein in normal cows were expressed in granulosa cells collected from follicles measuring 1–3 and 4–7 mm in a diameter, respectively. LPS content in endometrium and follicular fluid of CE cows was significantly higher than that in normal cows. Compared to normal cows, CE cows showed lower expression of follicular development markers (FSHR, CYP19A1, CCND2, and LHCGR) in granulosa cells, lower estradiol-17β concentrations in follicular fluid, and lower granulosa cell proliferation. CE contraction significantly increased cytokine expressions (TNF, IL-1A, and IL-1B) in granulosa cells and suppressed apoptosis of granulosa cells compared to normal cows. LPS significantly suppressed the expression of follicular development markers and the production of estradiol-17β in granulosa cells and reduced granulosa cells proliferation compared to cells cultured without LPS. LPS significantly increased cytokine expressions and suppressed granulosa cell apoptosis. Thus, the present results suggest that the existence of LPS in developing follicles is one of the causes of ovarian quiescence in cows.  相似文献   

14.
15.
Hepatocellular carcinoma (HCC) is the main threat for the patients infected with hepatitis B virus (HBV), but the oncogenic mechanism of HBV-related HCC is still controversial. Previously, we have found that several HBV surface gene (HBS) non-sense mutations are oncogenic. Among these mutations, sW182* was found to have the most potent oncogenicity. In this study, we found that Carbonic Anhydrase X (CA10) level was specifically increased in sW182* mutant-expressing cells. CA10 overexpression was also associated with HBS nonsense mutation in HBV-related HCC tumor tissues. Transformation and tumorigenesis assays revealed that CA10 had significant oncogenic activity. In addition, CA10 overexpression resulted in dysregulation of apoptosis-related proteins, including Mcl-1, Bcl-2, Bcl-xL and Bad. While searching for the regulatory mechanism of CA10, miR-27b was found to downregulate CA10 expression by regulating its mRNA degradation and its expression was decreased in sW182* mutant cells. Moreover, CA10 overexpression was associated with down-regulation of miR-27b in human HBV-related HCC tumor tissues with sW182* mutation. Therefore, induction of the expression of CA10 through repression of miR-27b by sW182* might be one mechanism involved in HBS mutation-related hepatocarcinogenesis.  相似文献   

16.
PurposeLong-term failure of vein grafts due to neointimal hyperplasia remains an important problem in coronary artery bypass graft surgery. Endothelial to mesenchymal transition (EndMT) contributes to vein graft vascular remodeling. However, there is little study on microRNA-mediated EndMT contributions to neointimal formation in vein graft. We hypothesized that microRNA-92a (miR-92a) might play an important role in determining EndMT contributions to neointimal formation.MethodsmiR-92a and EndMT-related proteins detected by qRT-PCR and Western blot in vitro and in vivo. Adeno-associated virus 6 (AAV6) delivery gene therapy was used to inhibit neointimal formation in vivo. The intimal hyperplasia of vein grafts was measured by HE staining, the expression of EndMT-related protein in vein grafts was measured by immunofluorescence. Immunohistochemistry and luciferase assay were used to detect potential targets of miR-92a.ResultsThe expression of miR-92a was found to be upregulated in neointimal hyperplasic lesions after vein grafting. Using cultured human umbilical vein endothelial cells (HUVECs), we show that TGF-β1 treatment of HUVECs significantly increased miR-92a expression and induced EndMT, characterized by suppression of endothelial-specific markers (CD31 and VE-cadherin) and an increase in mesenchymal-specific markers (a-SMA and vimentin), while inhibition of miR-92a expression blunted EndMT in cultured HUVECs. Furthermore, AAV6 mediated miR-92a suppression gene therapy effectively resulted in decreased EndMT and less neointimal formation in vein grafts in vivo. We further identified that integrin alpha 5 (ITGA5) is a potential target gene involved in the development of neointima formation in these vein grafts.ConclusionThis data suggests that neointimal formation does not solely rely on vascular smooth muscle cell phenotypic switching but is also related to EndMT, and miR-92a-mediated EndMT is an important mechanism underlying neointimal formation in vein grafts.  相似文献   

17.
Osteosarcoma is one of the commonest metastatic tumor in children and teenagers, and has a hopeless, prognosis. Long non-coding RNA (lncRNA) acts momentous roles as a regulator on the proliferation and migration of cancer. Here, we performed GEO database analysis and qPCR to identify differentially expressed lncRNAs in osteosarcoma cells. Knockdown of lncRNA LINC01140 was used to detect the effect of LINC01140 on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. Bioinformatics analysis and qPCR identified the LINC01140/miR-139-5p/Homeobox A9 (HOXA9) regulatory axis. RNA immunoprecipitation assay, Dual-luciferase assay, and rescue experiments confirmed the interaction of LINC01140/miR-139-5p/HOXA9 in osteosarcoma. LINC01140 was overexpressed in osteosarcoma and knocking down LINC01140 restrained the proliferation and invasion of osteosarcoma cells and EMT. In Saos2 and MG63 cells, LINC01140 sponged miR-139-5p, and a miR-139-5p inhibitor overturned the suppression of LINC01140 knockdown on the proliferation and migration of osteosarcoma cells. Moreover, miR-139-5p depressed the invasion, proliferation, and EMT of osteosarcoma cells via targeting HOXA9. Our results indicate that LINC01140 downregulation inhibits the invasion, proliferation, and EMT in osteosarcoma cells through targeting the miR-139-5p/HOXA9 axis. Therefore, LINC01140 is a potential therapeutic target for osteosarcoma.  相似文献   

18.
《Genomics》2022,114(3):110319
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for myocardial infarction (MI). This study aims to explore the mechanism of human umbilical cord MSCs (hucMSCs)-derived EVs loaded with miR-223 on MI. Inflammation, cell biological functions, and fibrosis in vitro were measured. Furthermore, MI rat models were established to verify the role of EVs-miR-223 in vivo. The binding relationship between miR-223 and P53 was confirmed. ChIP assay was utilized to observe the combination of P53 and S100A9. The suppressed fibrosis of cardiomyocytes occurred with cells overexpressing miR-223. MiR-223 contributed to the angiogenesis of HUVECs. P53 was a target gene of miR-223. In vivo, miR-223 relieved myocardial fibrosis and inflammation infiltration, and promoted the angiogenesis in MI rats. HucMSC-derived EVs loaded with miR-223 mitigates MI and promotes myocardial repair through the P53/S100A9 axis, manifesting the underlying therapy values of hucMSC-derived EVs loaded with miR-223 in MI.  相似文献   

19.
20.
Long noncoding RNAs (lncRNAs) play crucial roles in tumor development of osteosarcoma (OS). LncRNA PCAT6 was involved in the progression of multiple human cancers. However, the biological function of PCAT6 in OS remains largely unknown. We found that PCAT6 was elevated in OS tissues relative to that in their adjacent normal tissues. The upregulation of PCAT6 was positively associated with metastasis status and advanced stages and predicted poor overall and progression-free survivals in patients with OS. Functionally, silencing PCAT6 inhibited the proliferation, migration and invasion abilities of OS cells. Mechanistically, PCAT6, acting as a competitive endogenous RNA, upregulated expression of TGFBR1 and TGFBR2 to activate TGF-β pathway via sponging miR-185–5p. This study uncovers a novel underlying molecular mechanism of PCAT6-miR-185-5p-TGFBR1/2-TGF-β signaling axis in promoting tumor progression in OS, which indicates that PCAT6 may serve as a promising prognostic factor and therapeutic target again OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号