首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaves of 14 species of Ficus growing in the Budongo Forest, Uganda, were analysed for vacuolar flavonoids. Three to six accessions were studied for each species to see whether there was intraspecific chemical variation. Thirty-nine phenolic compounds were identified or characterised, including 14 flavonol O-glycosides, six flavone O-glycosides and 15 flavone C-glycosides. In some species the flavonoid glycosides were acylated. Ficus thonningii contained in addition four stilbenes including glycosides. Most of the species could be distinguished from each other on the basis of their flavonoid profiles, apart from Ficus sansibarica and Ficus saussureana, which showed a very strong intraspecific variation. However, on the whole flavonoid profiles were sufficiently distinct to help in future identifications.  相似文献   

2.
The natural flavonoids, especially their glycosides, are the most abundant polyphenols in foods and have diverse bioactivities. The biotransformation of flavonoid aglycones into their glycosides is vital in flavonoid biosynthesis. The main biological strategies that have been used to achieve flavonoid glycosylation in the laboratory involve metabolic pathway engineering and microbial biotransformation. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoid glycosides using biotechnology, as well as the impact of glycosylation on flavonoid bioactivity. Uridine diphosphate glycosyltransferases play key roles in decorating flavonoids with sugars. Modern metabolic engineering and proteomic tools have been used in an integrated fashion to generate numerous structurally diverse flavonoid glycosides. In vitro, enzymatic glycosylation tends to preferentially generate flavonoid 3- and 7-O-glucosides; microorganisms typically convert flavonoids into their 7-O-glycosides and will produce 3-O-glycosides if supplied with flavonoid substrates having a hydroxyl group at the C-3 position. In general, O-glycosylation reduces flavonoid bioactivity. However, C-glycosylation can enhance some of the benefits of flavonoids on human health, including their antioxidant and anti-diabetic potential.  相似文献   

3.
Thirty-one accessions of nine species belonging to three subgenera of Ocimum (basil, family Lamiaceae) were surveyed for flavonoid glycosides. Substantial infraspecific differences in flavonoid profiles of the leaves were found only in O. americanum, where var. pilosum accumulated the flavone C-glycoside, vicenin-2, which only occurred in trace amounts in var. americanum and was not detected in cv. Sacred. The major flavonoids in var. americanum and cv. Sacred, and also in all other species investigated for subgenus Ocimum, were flavonol 3-O-glucosides and 3-O-rutinosides. Many species in subgenus Ocimum also produced the more unusual compound, quercetin 3-O-(6″-O-malonyl)glucoside, and small amounts of flavone O-glycosides. The level of flavonol glycosides produced was reduced significantly in glasshouse-grown plants, but levels of flavone glycosides were unaffected. A single species investigated from subgenus Nautochilus, O. lamiifolium, had a different flavonoid glycoside profile, although the major compound was also a flavonol O-glycoside. This was identified as quercetin 3-O-xylosyl(1‴→2″)galactoside, using NMR spectroscopy. The species investigated from subgenus Gymnocimum, O. tenuiflorum (=O. sanctum), was characterised by the accumulation of flavone O-glycosides. These were isolated, and identified as the 7-O-glucuronides of luteolin and apigenin. Luteolin 5-O-glucoside was found in all nine species of Ocimum studied, and is considered to be a key character for the genus.  相似文献   

4.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

5.
In a leaf survey of 142 species from 75 genera of the Orchidaceae, flavone C-glycosides (in 53%) and flavonols (in 37 %) were found to be the most common constituents. However, since these compounds are not found uniformly and their distribution shows a strong correlation with plant geography, it is not possible to represent the Orchidaceae by a single flavonoid profile. Thus, flavone C-glycosides are most common in tropical and subtropical species of the Epidendroid and Vandoid tribes (in 63%) and flavonol glycosides are more characteristic of temperate species of the Neottioid tribes (in 78%). By contrast 6-hydroxyflavones (in 6 species), luteolin (in 2 species) and tricin as the 5-glucoside (in 1 species) are all rare. Three new glycosides were characterised: scutellarein 6-methyl ether 7-rutinoside from Oncidium excavatum and O. sphacelatum, pectolinarigenin 7-glucoside from 0. excavatutn and Eria javanica, and luteolin 3′,4′-diglucoside from Listera ovata. The xanthones, mangiferin and isomangiferin were found in Mormolyca ringens, Maxillaria aff. luteo-alba and 5 Polystachya species and a mangiferin sulphate tentatively identified in P. nyanzensis. Other unusual phenolic constituents include 6,7-methylenedioxy- and 6,7-dimethoxycoumarins from Dendrobium densiflorum and D. farmeri, formed by the rearrangement during the extraction process from the corresponding O-glucosyloxycinnamic acids. The origin and relationship of the Orchidaceae to other monocot groups are discussed in the light of the flavonoid evidence.  相似文献   

6.
Documentation of amentoflavone O-glucosides as the predominant flavonoid glycosides in both genera of the Psilotaceae clearly distinguishes this family from all other families of vascular plants. Psilotum and Tmesipteris also possess apigenin C- and O-glycosides as common flavonoid types. Apigenin 7-O-rhamnoglucoside occurs in both genera and the previously undocumented apigenin 7-O-rhamnoglucoside-4′-O-glucoside, although identified only in Tmesipteris, may also be present in Psilotum. The existence of flavone C-glycosides in both genera may provide a phytochemical relationship between the Psilotaceae and some ferns. The phylogenetic significance of these results is discussed.  相似文献   

7.
Lipophilic and vacuolar flavonoids were separately identified in representative temperate species of the genera Anthemis, Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum. The four Anthemis species investigated variously produced four main surface constituents, in leaf and flower: santin, quercetagetin 3,6,3′-trimethyl ether, scutellarein 6,4′-dimethyl ether and 6-hydroxyluteolin 6,3′-dimethyl ether. By contrast, surface extracts of disc and ray florets of the species of Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum surveyed yielded five common flavones in the free state: apigenin, luteolin, acacetin, apigenin 7-methyl ether and chrysoeriol. Polar flavonoids were isolated and identified in leaf, ray floret and disc floret of all the above plants. Anthemis species were distinctive in having flavonol glycosides in the leaves, whereas the leaf flavonoids of the other taxa were generally flavone O-glycosides. The 3-glucoside and 3-rutinoside of patuletin were characterised for the first time from Anthemis tinctoria ssp. subtinctoria. Two new flavonol glycosides, the 5-glucuronides of quercetin and kaempferol, were obtained from the leaf of Leucanthemum vulgare, where they co-occur with the related 5-glucosides and with several flavone glycosides. The ray florets of these Anthemideae generally contain apigenin and/or luteolin 7-glucoside and 7-glucuronide, whereas disc florets have additional flavonol glycosides, notably the 7-glucosides of quercetin and patuletin and the 7-glucuronide of quercetin. A comparison of the flavonoid pattern encountered here with those previously recorded for Tanacetum indicate some chemical affinity between Anthemis and Tanacetum. Flavonoid patterns of the other five genera are more distinct from those of Tanacetum and suggest that those genera form a related group. All 14 species surveyed for their flavonoid profiles have distinctive constituents and the chemical data are in harmony with modern taxonomic treatments of the “Chrysanthemum complex” as a series of separate genera.  相似文献   

8.
A survey of flavonoids in the leaves of 81 species of the Zingiberales showed that, while most of the major classes of flavonoid are represented in the order, only two families, the Zingiberaceae and Marantaceae are rich in these constituents. In the Musaceae (in 9 species), Strelitziaceae (in 8 species) and Cannaceae (1 of 2 species) flavonol glycosides were detected in small amount and in the Lowiaceae no flavonoids were fully identified. In the Zingiberaceae kaempferol (in 22%), quercetin (72%) and proanthocyanidins (71%) are distributed throughout the family. The two subfamilies of the Zingiberaceae may be distinguished by the presence of myricetin (in 26%), isorhamnetin (10%) and syringetin (3%) in the Zingiberoideae and of flavone C-glycosides (in 86% of taxa) in the Costoideae. A number of genera have distinctive flavonol profiles: e.g. Hedychium species have myricetin and quercetin. Roscoea species isorhamnetin and quercetin and Alpinia species kaempferol and quercetin glycosides. A new glycoside, syringetin 3-rhamnoside was identified in Hedychium stenopetalum. In the Zingiberoideae flavonols were found in glycosidic combination with glucuronic acid, rhamnose and glucose but glucuronides were not detected in the Costoideae or elsewhere in the Zingiberales. The Marantaceae is chemically the most diverse group and may be distinguished from other members of the Zingiberales by the occurrence of both flavone O- and C-glycosides and the absence of kaempferol and isorhamnetin glycosides. The distribution of flavonoid constituents within the Marantaceae does not closely follow the existing tribai or generic limits. Flavonols (in 50% of species). flavones (20%) and flavone C-glycosides (40%) are found with similar frequency in the two tribes and in the genera Calathea and Maranta both flavone and flavonol glycosides occur. Apigenin- and luteolin-7-sulphates and luteolin-7,3′-disulphate were identified in Maranta bicolor and M. leuconeura var. kerchoveana and several flavone C-glycosides sulphates in Stromanthe sanguinea. Anthocyanins were identified in those species with pigmented leaves or stems and a common pattern based on cyanidin-and delphinidin-3-rutinosides was observed throughout the group. Finally the possible relationship of the Zingiberales to the Commelinales, Liliales, Bromeliales and Fluviales is discussed.  相似文献   

9.
More than 50 collections of five species forming the Achillea nobilis group were analysed for their leaf flavonoid complement. Major accumulation trends were found to be C-glycosylflavones and flavonol 3-O-glycosides. The most common pattern consisted of the C-8-glycosylfiavones (vitexin and orientin), the C-6-glycosylflavone (isoörientin) together with minor amounts of di-C-glycosylapigenins and quercetin 3-O-glycosides. Additionally, C-6-glycosylflavones (isovitexin) and their 7-methyl ethers swertisin and swertiajaponin were sporadically accumulated, characterizing particularly two subspecies of A. nobilis. Whereas C-glycosylflavone dominated profiles were typical of most species, two taxa exhibited a flavonol dominated profile (A. ligustica; A. virescens p.p.). Regarding the infraspecific and interpopulational variations of flavonoid accumulation trends, their systematic and ecological significance is briefly discussed.  相似文献   

10.
The conifer genus Phyllocladus is shown by comparative flavonoid chemistry to be remarkably homogeneous and quite distinct from other studied genera in the Podocarpaceae. It is characterized by the accumulation (in the foliage) of a predominance of flavone O-glycosides, and in particular, luteolin 7- and 3′-O-glycosides. Lower levels of flavonol O-glycosides are also evident. Two flavone glycosides are reported for the first time, luteolin 3′-O-α-L-rhamnopyranoside and luteolin 7-O-α-L-rhamnoside.  相似文献   

11.
The flavonoid profiles of Turkish Torilis Gaertn. (Apiaceae) species were studied by TLC, HPLC-UV and HPLC/ESI/MS2 (negative mode). O-glycosides of luteolin, apigenin and chrysoeriol were identified from crude extracts with the help of mass spectra in different MS/MS modes, such as full scan, precursor ion scan and product ion scan. Luteolin-7-O-glucoside and luteolin-7-O-rutinoside were common to all species. Flavonoid profiles usually differ from one species to another and can be put to use for a genus such as Torilis which has been little studied. By the help of different flavonoid profiles, it is concluded that, the plants, which are recognised as less rayed subspecies of Torilis arvensis (Huds.) Link. in various floras including Turkish one, must be classified in species category as Torilis chrysocarpa and Torilis purpurea. Flavonoid profiles seem to be in relation with evolutionary biogeography of the species. Because the most isolated species of the genus, endemic Torilis triradiata, has the most different flavonoid pattern. Moreover, geographically isolated species, T. triradiata and Torilis leptocarpa, do not share any flavonoid except for the two which are common to all species.  相似文献   

12.
Blue flowers of six Bhutani Meconopsis species, M. bhutanica, M. bella, M. horridula, M. simplicifolia, M. primulina and M. polygonoides, were surveyed for anthocyanins and other flavonoids. Four anthocyanins were isolated and identified as cyanidin 3-O-sambubioside-7-O-glucoside (1), cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)]-7-O-glucoside (2), cyanidin 3-O-sambubioside (4) and cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)] (5). On the other hand, 12 flavonols were isolated from their Meconopsis species with various combination and characterized as kaempferol 3-O-glycosides (812), kaempferol 3,7-O-glycosides (1316), quercetin 3-O-glycosides (17 and 18) and isorhamnetin 3-O-glycoside (19). Of six Meconopsis species which were surveyed in this experiment, anthocyanin and flavonol composition of five species except for M. horridula was clarified for the first time. Their Meconopsis species showed the different flavonoid profiles, respectively, and flavonoid diversity within the glycosylation level of Meconopsis flowers were indicated.  相似文献   

13.
In a leaf survey of 54 specimens of 11 Old World Lupinus species three classes of flavonoids were detected: flavones (in 82%), flavonols (in 36%) and flavone C-glycosides (in 55%). The rough-seeded species were clearly distinguished from the smooth-seeded taxa by the presence of a novel 2′-hydroxyflavone, luteolin and flavone C-glycosides as major leaf constituents and by the absence of flavonols. Within the smooth-seeded species, there are three flavonoid patterns: (a) flavonols only, L. albus; (b) flavones and flavonols, L. luteus, L. hispanicus and L. angustifolius; and (c) flavones only, L. micranthus. L. angustifolius further differed in uniquely producing diosmetin as a major leaf constituent. These divisions coincide exactly with previous groupings based on alkaloidal and morphological data. Amongst the 12 samples of L. angustifolius three chemical races were distinguished and a number of diosmetin glucoside malate esters detected. The flower flavonoid aglycone patterns of the nine Old World species surveyed differed markedly from the corresponding leaf profiles by the presence of flavones: luteolin and apigenin in eight and chrysoeriol in seven species as major constituents, while flavone C-glycosides were found only in trace amount in three species. In a leaf flavonoid survey of 13 representative New World Lupinus taxa, glycoflavones were major leaf components, a variety of methylated flavones were identified and flavonols were absent. The presence of the novel 2′-hydroxyflavone in five New World species may indicate some evolutionary link with the rough seeded taxa of the Old World.  相似文献   

14.
Flavone glycosides are the main flavonoid leaf constituents in the related genera Parahebe and Veronica (Scrophulariaceae), in agreement with former chemical studies of the family. In Parahebe there are groups of species in which there are mainly luteolin glycosides, and groups in which 6-hydroxyluteolin dominates. Small amounts of apigenin occur in many taxa. Glycosylation is usually in the 7-position but 4′- and 5-glycosides were also found. In Veronica a larger variety of flavone aglycones was found: e.g. luteolin, apigenin, chrysoeriol, tricin and three different 6-hydroxyflavones. They are often present in the plants in the form of glucuronides. Glycosylation is in the 7-or-5-position. Most species of both genera have a distinctive pattern of flavonoid glycosides in their leaves which can be used for identification. Populations of P. catarractae are an exception in showing three different patterns, but here the variety in flavone profiles corresponds to the pattern of morphological and geographic variation within this taxon. Anthocyanins are responsible for the blue, mauve and pink colours of the flowers in the two genera. In Veronica they are based on delphinidin, whereas in Parahebe catarractae on both delphinidin and cyanidin.  相似文献   

15.
GC-MS of perdeuteriomethylated flavonoid aglycones, singly and in mixtures, yields information about both the aglycone types and their substitution patterns. Fragmentation patterns of flavonoid aglycones are discussed. Acid hydrolysis of perdeuteriomethylated flavonoid glycosides, singly and in mixtures, followed by ethylation with diazoethane provides derivatives suitable for GC-MS; the introduced ethyl groups permit identification of the position of attachment of sugars in flavonoid O-glycosides.  相似文献   

16.
A role of non‐glandular emergences in avoiding ozone (O3) damages by preventing its entrance into leaf tissues has been suggested in the O3‐tolerant species Croton floribundus (Euphorbiaceae). However, this function against O3 damage has been underestimated due to the covering wax layer, mostly composed of saturated hydrocarbon, which has low O3 reactivity. To evaluate the role of these emergences in conferring tolerance to O3, we mechanically removed the non‐glandular emergences from leaf blades of C. floribundus, submitted the plants to acute O3 fumigation, and assessed morphological and microscopic alterations. Plants with intact leaves treated with O3 showed the same phenotype as control samples but showed microscopic indicators of accelerated senescence. These alterations indicated a whole‐plant response to O3. In contrast, plants whose leaves had got their emergences removed exhibited specific morphological symptoms as well as microscopic O3 damage. We thus conclude that the leaf emergences constitute a barrier for volatile contention, preventing O3 damage to leaf tissues in C. floribundus. When these structures have been removed, defense volatiles are possibly quickly dispersed, makes this species vulnerable to O3. This study highlights the relevance of surface structures for plant resistance to O3 damages, complementing biochemical defenses.  相似文献   

17.
Mayaca is an aquatic monocot of the monogeneric family Mayacaceae. The flavonol glycosides quercetin 3-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-glucoside, and the flavone luteolin 5-O-glucoside were found in methanolic leaf extracts. The presence of flavonol and flavone O-glycosides sets the Mayacaceae apart from the Commelinaceae, which accumulates predominantly flavone C-glycosides.  相似文献   

18.
The major flavonoid constituents of Phragmites australis flowers are the C-glycosylflavones swertiajaponin, isoswertiajaponin and two new O-glycosides, the 3′-O-gentiobioside and the 3′-O-glucoside of swertiajaponin. Two unusual flavonol glycosides, rhamnetin 3-O-rutinoside and rhamnetin 3-O-glucoside, were also characterized from the same tissue.  相似文献   

19.
Sullivantia species were found to produce quercetin 3-O-glycosides, several of which contain glucuronic acid, as well as pedalitin (6-hydroxy-7-O-methyl luteolin), pedalitin 6-O-glycosides, and small amounts of luteolin. Sullivantia has a unique combination of compounds that distinguishes it from other genera in the Saxifraginae for which flavonoid data are available. The nature of the flavonoid compounds is in accordance with a general trend within the Saxifragaceae of reduction and replacement of flavonols by flavones.  相似文献   

20.
The flavonoid chemistry of Takakia is described for the first time. T. lepidozioides, thought to be amongst the most primitive of extant liverworts, contains a high level and wide variety of flavone C- and O-glycosides, many of which are unique. New flavonoids include the 8-O-glucuronide and 8-O-xylosylglucoside of takakin (8-hydroxyacacetin), luteolin 6-C-arabinoside-8-C-pentoside, kaempferol 3-O-glucoside-7-O-xyloside and a number of tricetin C-glycosides. The only other known Takakia species, T. ceratophylla, contains the same 4 major constituents but significantly lacks flavonols. The often suggested relationship of Takakia with the order Calobryales is not supported by the available flavonoid data. Biochemical affinities of Takakia with all major liverwort orders are noted and the flavonoid data are interpreted as supporting the concept of Takakia as an isolated branch among the ancestors of modern bryophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号