首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of immune checkpoint inhibitors (ICIs) with chemotherapy to enhance responses in oesophageal adenocarcinoma (OAC) is an attractive approach. We identified subpopulations of OAC cells expressing inhibitory immune checkpoint (IC) ligands (PD-L1, PD-L2 and CD160) and receptors (PD-1, TIGIT, TIM-3, LAG-3 and A2aR) in vitro and in ex vivo biopsies. Combination chemotherapy regimens FLOT and CROSS promote a more immune-resistant phenotype through upregulation of IC ligands and receptors on OAC cells in vitro. Importantly, this study investigated if OAC cells, enriched for ICs exhibited a more stem-like and senescent-like phentoype. FLOT preferentially upregulates PD-L1 on a stem-like OAC cell phenotype, defined by ALDH activity. Expression of senescence-associated β-galactosidase is induced in a subpopulation of OAC cells following FLOT and CROSS chemotherapy treatment, along with enhanced expression of TIM-3 and A2aR ICs. Blockade of PD-1 signalling in OAC cells induced apoptosis and enhanced FLOT and CROSS chemotherapy toxicity in vitro. Upregulation of ICs on OAC cells following chemotherapy may represent potential mechanisms of chemo-immune resistance. Combination ICIs may be required to enhance the efficacy of chemotherapy and immunotherapy in OAC patients.  相似文献   

2.
Response rates to immune checkpoint blockade (ICB) remain low in oesophageal adenocarcinoma (OAC). Combining ICB with immunostimulatory chemotherapies to boost response rates is an attractive approach for converting ‘cold’ tumours into ‘hot’ tumours. This study profiled immune checkpoint (IC) expression on circulating and tumour-infiltrating T cells in OAC patients and correlated these findings with clinical characteristics. The effect of first-line chemotherapy regimens (FLOT and CROSS) on anti-tumour T cell immunity was assessed to help guide design of ICB and chemotherapy combinations in the first-line setting. The ability of ICB to enhance lymphocyte-mediated cytolysis of OAC cells in the absence and presence of post-FLOT and post-CROSS chemotherapy tumour cell secretome was assessed by a CCK-8 assay. Expression of ICs on T cells positively correlated with higher grade tumours and a subsequent poor response to neoadjuvant treatment. First-line chemotherapy regimens substantially altered IC expression profiles of T cells increasing PD-1, A2aR, KLRG-1, PD-L1, PD-L2 and CD160 and decreasing TIM-3 and LAG-3. In addition, pro-inflammatory T cell cytokine profiles were enhanced by first-line chemotherapy regimens. T cell activation status was significantly altered; both chemotherapy regimens upregulated co-stimulatory markers ICOS and CD69 yet downregulated co-stimulatory marker CD27. However, ICB attenuated chemotherapy-induced downregulation of CD27 on T cells and promoted differentiation of effector memory T cells into a terminally differentiated state. Importantly, dual nivolumab-ipilimumab treatment increased lymphocyte-mediated cytolysis of OAC cells, an effect further enhanced in the presence of post-FLOT tumour cell secretome. These findings justify a rationale to administer ICBs concurrently with first-line chemotherapies.  相似文献   

3.
4.
PVR/TIGIT and PD-L1/PD-1 axes play essential roles in tumor immune evasion and could be potential targets for combined immunotherapy. We aimed to evaluate the expression status of the above-mentioned immune markers in lung squamous cell carcinoma (LUSC), and investigate their survival impact and relevance with the immune microenvironment and clinicopathological features. We retrospectively collected specimens from 190 LUSC patients, who underwent pulmonary surgeries, and we performed immunohistochemistry assays of PVR, TIGIT, PD-L1, PD-1 and CD8. In our cohort, the positive rate of PVR was 85.8%, which was much higher than the positive rate of PD-L1 at 26.8%. A total of 32 (16.8%) patients demonstrated co-expression of PVR/PD-L1. High TIGIT density was correlated with positive PD-L1 expression, high PD-1 density, and high CD8 density (PD-L1, P=0.033; PD-1, P<0.001; CD8, P<0.001), and positive PVR expression was correlated with positive PD-L1 expression (P=0.046). High TIGIT density and high PVR/TIGIT expression were correlated with advanced TNM stage (TIGIT density, P=0.020; PVR/TIGIT expression, P=0.041). Patients with positive PVR expression, high TIGIT density, high PVR/TIGIT expression and PVR/PD-L1 co-expression exhibited a significantly worse prognosis (PVR, P=0.038; TIGIT, P=0.027; PVR/TIGIT, P=0.014; PVR/PD-L1, P=0.018). Multivariate analysis demonstrated that PVR/PD-L1 co-expression (Hazard ratio [HR], 1.756, 95% CI, 1.152-2.676, P=0.009) was an independent prognostic factor in LUSC patients. In conclusion, we demonstrated the expression status of PVR/TIGIT and PD-L1/PD-1 in LUSC. PVR/PD-L1 co-expression was an independent prognostic factor in LUSC patients and may serve as a potential predictive biomarker for dual-targeting immunotherapy.  相似文献   

5.
6.
In early studies on energy metabolism of tumor cells, it was proposed that the enhanced glycolysis was induced by a decreased oxidative phosphorylation. Since then it has been indiscriminately applied to all types of tumor cells that the ATP supply is mainly or only provided by glycolysis, without an appropriate experimental evaluation. In this review, the different genetic and biochemical mechanisms by which tumor cells achieve an enhanced glycolytic flux are analyzed. Furthermore, the proposed mechanisms that arguably lead to a decreased oxidative phosphorylation in tumor cells are discussed. As the O(2) concentration in hypoxic regions of tumors seems not to be limiting for the functioning of oxidative phosphorylation, this pathway is re-evaluated regarding oxidizable substrate utilization and its contribution to ATP supply versus glycolysis. In the tumor cell lines where the oxidative metabolism prevails over the glycolytic metabolism for ATP supply, the flux control distribution of both pathways is described. The effect of glycolytic and mitochondrial drugs on tumor energy metabolism and cellular proliferation is described and discussed. Similarly, the energy metabolic changes associated with inherent and acquired resistance to radiotherapy and chemotherapy of tumor cells, and those determined by positron emission tomography, are revised. It is proposed that energy metabolism may be an alternative therapeutic target for both hypoxic (glycolytic) and oxidative tumors.  相似文献   

7.
Epstein–Barr virus-positive diffuse large B-cell lymphoma (EBV+DLBCL) is an aggressive malignancy that is largely resistant to current therapeutic regimens, and is an attractive target for immune-based therapies. Anti-programmed death-1 (PD-1) antibodies showed encouraging anti-tumor effects in both preclinical models and advanced solid and hematological malignancies, but its efficacy against EBV+DLBCL is unknown. Herein, we performed experiments using co-culture system with T cells and lymphoma cell lines including EBV+DLBCL and EBV-DLBCL [including germinal center B-cell like (GCB)-DLBCL and non-GCB-DLBCL] in vitro. We show that lymphoma cells augmented the expression of PD-1 on T cells, decreased the proliferation of T cells, and altered the secretion of multiple cytokines. However, through PD-1 blockade, these functions could be largely restored. Notbaly, the effect of PD-1 blockade on antitumor immunity was more effective in EBV+DLBCL than that in EBV-DLBCL in vitro. These results suggest that T-cell exhaustion and immune escape in microenvironment is one of the mechanisms underlying DLBCL; and PD-1 blockade could present as a efficacious immunotherapeutic treatment for EBV+DLBCL.  相似文献   

8.
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity.  相似文献   

9.
To investigate whether the action potential duration (APD) or resting tension was dependent on global ATP content, and whether they were preferentially dependent on glycolytic ATP, APD and resting tension were measured under various metabolic inhibition with corresponding measurement of ATP content in guinea pig ventricular muscles. Oxidative phosphorylation was inhibited by either hypoxic perfusion, the perfusion of sodium cyanide, or 2,4-dinitrophenol. Glycolysis was blocked by the perfusion of iodoacetic acid, and hypoxia with variable glycolytic activities was achieved by hypoxic perfusion in the presence of glucose (5, 10, and 50 mM). APD began to decrease when ATP content decreased to less than 3 mM/kg w.w. from the control level of 4.35 mM/kg w.w. APD shortened significantly and resting tension increased steeply, when ATP content decreased below 1 mM/kg w.w. The dependence of APD and the increase in resting tension on ATP content was not affected by the mode of metabolic block, that is, the inhibition of glycolysis and/or oxidative phosphorylation. Though other factors can affect APD and resting tension, we found no evidence of functional ATP compartmentation, with respect to APD and the increase in resting tension during metabolic inhibition.  相似文献   

10.
Zhang H  Li W  Sun S  Yu S  Zhang M  Zou F 《Cell proliferation》2012,45(2):167-175
Objectives: Sphingosine kinase (SphK), which is regulated by hypoxia, catalyses phosphorylation of sphingosine to produce sphingosine‐1‐phosphate, which stimulates invasiveness of gliomas. However, whether SphK is involved in proliferation of glioma cells under hypoxic conditions is not clearly understood. In this study, we have investigated the role of SphK in of proliferation glioma cells under hypoxia. Materials and methods: Effects of small interfering RNA (siRNA) on SphKs, SKI (inhibitor of SphK) and U0126 (inhibitor of ERK) on proliferation of glioma cells under hypoxia were studied using CCK‐8 assay and flow cytometry. Protein expression profiles were evaluated by Western blot analysis. Results:  SKI suppressed proliferation of glioma cells under hypoxia. Similarly, downregulation of SphKs by siRNA inhibited glioma cell proliferation, and the cell cycle was arrested in G2/M phase when SphK1 was inhibited. In addition, inhibition of SphK1 attenuated phosphorylation of ERK in hypoxic conditions. Furthermore, U0126 markedly inhibited cell population growth and arrested cells in G2/M as effectively as SKI. However, silencing SphK2 induced cell cycle arrest in the S phase and it showed little effect on hypoxia‐induced activation of ERK. Conclusions: SphK1 and SphK2 are involved in proliferation of glioma cells in hypoxic conditions through distinct signalling pathways. SphK1, but not SphK2, promotes cell population expansion in hypoxic conditions by activating ERK.  相似文献   

11.
The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1-PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8(+) T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8(+) T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8(+) T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8(+) T cells. Notably, cytomegalovirus (CMV)-specific CD8(+) T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8(+) T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8(+) T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8(+) repertoire.  相似文献   

12.
Recent clinical data support ideas of Programmed death receptor-ligand 1 (PD-L1; also called B7-H1, CD274) playing an important role in immune evasion of tumor cells. Expression of PD-L1 on tumors strongly correlates with the survival of cancer patients. PD-L1 on tumors interacts with the co-inhibitory molecule Programmed death receptor-1 (PD-1, CD279) on T cells mediating decreased TCR-mediated proliferation and cytokine production. In animal tumor models, blockade of PD-L1/PD-1 interactions resulted in an improved tumor control. In addition, exhausted T cells during chronic viral infections could be revived by PD-L1 blockade. Thus, targeting PD-L1/PD-1 interactions might improve the efficacy of adoptive cell therapies (ACT) of chronic infections as well as cancers. Obstacles for a general blockade of PD-L1 might be its role in mediating peripheral tolerance. This review discusses the currently available data concerning the role of PD-L1 in tumor immune evasion and envisions possibilities for implementation into ACT for cancer patients. This article is a symposium paper from the conference “Cancer Immunotherapy 2006 Meets Strategies for Immune Therapy,” held in Mainz, Germany, on 4–5 May 2006.  相似文献   

13.
Genetically engineered pigs serve as excellent biomedical and agricultural models. To date, the most reliable way to generate genetically engineered pigs is via somatic cell nuclear transfer (SCNT), however, the efficiency of cloning in pigs is low (1–3%). Somatic cells such as fibroblasts frequently used in nuclear transfer utilize the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation for efficient energy production. The metabolism of somatic cells contrasts with cells within the early embryo, which predominately use glycolysis. We hypothesized that fibroblast cells could become blastomere‐like if mitochondrial oxidative phosphorylation was inhibited by hypoxia and that this would result in improved in vitro embryonic development after SCNT. In a previous study, we demonstrated that fibroblasts cultured under hypoxic conditions had changes in gene expression consistent with increased glycolytic/gluconeogenic metabolism. The goal of this pilot study was to determine if subsequent in vitro embryo development is impacted by cloning porcine embryonic fibroblasts cultured in hypoxia. Here we demonstrate that in vitro measures such as early cleavage, blastocyst development, and blastocyst cell number are improved (4.4%, 5.5%, and 17.6 cells, respectively) when donor cells are cultured in hypoxia before nuclear transfer. Survival probability was increased in clones from hypoxic cultured donors compared to controls (8.5 vs. 4.0 ± 0.2). These results suggest that the clones from donor cells cultured in hypoxia are more developmentally competent and this may be due to improved nuclear reprogramming during somatic cell nuclear transfer.  相似文献   

14.
利用伯氏疟原虫Plasmodium berghei ANKA(P.b ANKA)感染BALB/c小鼠,PD-1单抗阻断后,流式细胞术检测脾脏浆细胞、滤泡辅助性T细胞(Tfh)数量。qRT-PCR检测IL-21、IL-10和IL-6 mRNA水平,ELISA检测血清抗体,以探讨程序性死亡受体-1(programmed cell death-1, PD-1)在疟原虫初次感染中对体液免疫应答的影响。结果发现,PD-1单抗阻断加速了P.b ANKA感染小鼠的死亡。与对照组相比,PD-1阻断组感染后第12天短寿浆细胞(CD138~+CD44~+)数量明显降低(P0.05),长寿浆细胞(CD138~+CD44~-、CD138~-CD44~+)和Tfh(CD4~+CXCR5~+)细胞数量无差异性改变,脾细胞IL-21的mRNA水平明显下降(P0.05),血清抗裂殖子表面蛋白(merozoite surface protein, MSP)-1特异性IgG无明显改变。P.b ANKA感染中PD-1通路可能通过影响Tfh分泌IL-21进而干扰浆细胞数量影响体液免疫应答。  相似文献   

15.
16.
Immunotherapy has caused a paradigm shift in the treatment of several malignancies, particularly the blockade of programmed death-1 (PD-1) and its specific receptor/ligand PD-L1 that have revolutionized the treatment of a variety of malignancies, but significant durable responses only occur in a small percentage of patients, and other patients failed to respond to the treatment. Even those who initially respond can ultimately relapse despite maintenance treatment, there is considerable potential for synergistic combinations of immunotherapy and chemotherapy agents with immune checkpoint inhibitors into conventional cancer treatments. The clinical experience in the use of cytokines in the clinical setting indicated the efficiency of cytokine therapy in cancer immunotherapy. Combinational approaches to enhancing PD-L1/PD-1 pathways blockade efficacy with several cytokines such as interleukin (IL)-2, IL-15, IL-21, IL-12, IL-10, and interferon-α (IFN-α) may result in additional benefits. In this review, the current state of knowledge about PD-1/PD-L1 inhibitors, the date in the literature to ascertain the combination of anti-PD-1/PD-L1 antibodies with cytokines is discussed. Finally, it is noteworthy that novel therapeutic approaches based on the efficient combination of recombinant cytokines with the PD-L1/PD-1 blockade therapy can enhance antitumor immune responses against various malignancies.  相似文献   

17.
Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell–mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell–mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1–triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1–targeting therapeutic approaches.  相似文献   

18.
The expression of the programmed death 1 (PD-1) gene is an indicator of exhausted T-cells with decreased activation and function. It remains unknown, however, whether the methylation status of the PD-1 gene promoter is associated with PD-1 expression level. This study shows the changes of PD-1 expression levels and the demethylation status of the PD-1 promoter region in Molt-4 cells under different concentrations of 5-azacytidine (5-Zac). The result demonstrated that DNA demethylation at PD-1 promoter may contribute to PD-1 overexpression.  相似文献   

19.
Infection with hepatitis C virus (HCV) is associated with persistence in the majority of individuals. We demonstrate here that the inhibitory molecule programmed death-1 (PD-1) is significantly upregulated on total and HCV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in the peripheral blood and livers of patients with chronic infection compared to subjects with spontaneous HCV resolution, patients with nonviral liver disease, and normal controls. PD-1 expression on cytomegalovirus-specific CTLs also varies according to HCV status and is highest in patients with chronic infection. HCV-specific CTLs that are PD-1(high) express higher levels of the senescence marker CD57 than PD-1(low) CTLs, and CD57 expression is greater in chronic than in resolved infection. In vitro blockade of PD-1 by monoclonal antibodies specific to its ligands (PD-L1 and PD-L2) results in restoration of functional competence (proliferation and gamma interferon and interleukin-2 secretion) of HCV-specific CTLs, including those residing in the liver. This reversal of CTL exhaustion is evident even in individuals who lack HCV-specific CD4(+) T-cell help. Our data indicate that the PD-1/PD-L pathway is critical in persistent HCV infection in humans and represents a potential novel target for restoring function of exhausted HCV-specific CTLs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号