首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

2.
BackgroundA growing body of research suggests that long non-coding RNA (lncRNA) play an important role during the tumorigenesis and progression of cancers, including thyroid cancer (TC). Herein, we intended to uncover the role and mechanisms of LINC01311 in TC.MethodsThe relative LINC01311, miR-146b-5p, and IMPA2 expressions were quantified by subjecting TC cells and tissues to western blotting and RT-qPCR. CCK-8 and scratch-wound healing assays were carried out for the evaluation of the proliferation and migration of TC cells. The apoptosis was evaluated by flow cytometry assay and western blotting of Bax and Bcl-2 proteins. Xenograft tumor model was also used to study how LINC01311 functions during TC cell growth. Luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to ascertain miR-146b-5p's interactions with LINC01311 and IMPA2 3′UTR.ResultsThe TC cells and tissues exhibited a downregulation of LINC01311 and IMPA2 and an upregulation of miR-146b-5p. LINC01311 overexpression retarded TC cell growth in vitro as well as in vivo. The luciferase reporter and RIP assays verified that miR-146b-5p recognizes LINC01311 and IMPA2 3′UTR by base pairing. LINC01311 overexpression could counteract the oncogenic effect of miR-146b-5p in vitro. Moreover, IMPA2 upregulation could offset the tumor-promoting effect of miR-146b-5p.ConclusionLINC01311-mediated inhibition of TC cell growth was achieved by targeting the miR-146b-5p/IMPA2 axis. These findings support that targeting the LINC01311/miR-146b-5p/IMPA2 axis may be a promising approach against TC progression.  相似文献   

3.
Overexpressed CEACAM6 in tumor tissues plays important roles in invasion, metastasis and anoikis resistance in a variety of human cancers. We recently reported that CEACAM6 expression is upregulated in Gastric cancer (GC) tissues and promoted GC metastasis. Here, we report that CEACAM6 promotes peritoneal metastases in vivo and is negatively correlated with E-cadherin expression in GC tissues. Overexpressed CEACAM6 induced epithelial-mesenchymal transition (EMT) in GC, as measured by increases in the EMT markers N-cadherin, Vimentin and Slug while E-cadherin expression was decreased in CEACAM6-overexpressing GC cells; opposing results were observed in CEACAM6-silenced cells. Furthermore, E-cadherin expression was negatively correlated with depth of tumor invasion, lymph node metastasis and TNM stage in GC tissues. Additionally, CEACAM6 elevated matrix metalloproteinase-9 (MMP-9) activity in GC, and anti-MMP-9 antibody could reverse the increasing invasion and migration induced by CEACAM6. CEACAM6 also increased the levels of phosphorylated AKT, which is involved in the progression of a variety of human tumors. We further observed that LY294002, a PI3K inhibitor, could reverse CEACAM6-induced EMT via mesenchymal-epithelial transition. These findings suggest that CEACAM6 enhances invasion and metastasis in GC by promoting EMT via the PI3K/AKT signaling pathway.  相似文献   

4.
5.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

6.
目的:探讨miR-125a-3p在结肠癌细胞浸润与转移中的作用及其可能机制。方法:通过qRT-PCR方法检测miR-125a-3p在结肠癌细胞及组织样本中的表达;在结肠癌细胞过表达或沉默miR-125a-3p后,通过平板克隆实验、MTT实验、划痕实验、Transwell实验检测结肠癌细胞增殖、迁移及侵袭能力的变化;采用Western blot方法检测miR-125a-3p过表达后相关标志分子的表达水平变化情况。结果:miR-125a-3p在结肠癌细胞及组织呈现异常低表达;过表达miR-125a-3p抑制结肠癌细胞HCT116及SW480的增殖能力;过表达或沉默miR-125a-3p分别抑制或增强结肠癌细胞的迁移与侵袭能力;过表达miR-125a-3p在mRNA及蛋白水平均能够显著抑制Snail、N-cadherin及Vimentin的表达,而增加E-cadherin的表达。结论:miR-125a-3p参与调节结肠癌细胞浸润与转移,其机制可能是通过调控上皮间质转化途径介导的。  相似文献   

7.
8.
In the present study, we investigated the functional role of microRNA (miR)-630 in epithelial-to-mesenchymal transition (EMT) of gastric cancer (GC) cells, as well as the regulatory mechanism. Cells of human GC cell line SGC 7901 were transfected with miR-630 mimic or miR-630 inhibitor. The transfection efficiency was confirmed by qRT-PCR. Cell migration and invasion were determined by Transwell assay. Protein expression of E-cadherin, vimentin, and Forkhead box protein M1 (FoxM1) was tested by Western blot. Moreover, the expression of FoxM1 was elevated or suppressed, and then the effects of miR-630 abnormal expression on EMT and properties of migration and invasion were examined again, as well as protein expression of Ras/phosphoinositide 3-kinase (PI3K)/AKT related factors. The results showed that (i) the EMT and properties of migration and invasion were statistically decreased by overexpression of miR-630 compared to the control group but markedly increased by suppression of miR-630. However, (ii) abnormal expression of FoxM1 reversed these effects in GC cells. Moreover, (iii) expression of GTP-Rac1, p-PI3K, and p-AKT was decreased by miR-630 overexpression but increased by FoxM1 overexpression. (iv) The decreased levels of GTP-Rac1, p-PI3K, and p-AKT induced by miR-630 overexpression were dramatically elevated by simultaneous overexpression of FoxM1. In conclusion, our results suggest that miR-630 might be a tumor suppressor in GC cells. MiR-630 suppresses EMT by regulating FoxM1 in GC cells, supposedly via inactivation of the Ras/PI3K/AKT pathway.  相似文献   

9.
BackgroundBreast cancer is the most common malignancy and has been considered as a leading cause of cancer death in women. Exploring the mechanism of breast cancer metastasis is extremely important for seeking novel therapeutic strategies and improving prognosis.MethodsClinical specimens and pathological characteristics were collected for evaluating the expression of forkhead box class O 3a (FOXO3a) and twist-related protein 1 (TWIST-1) in breast cancer tissues. CCK-8 assay was used to analyze cell proliferation. Cell invasion and migration were assessed by transwell assays. The expression of FOXO3a, TWIST-1, miR-10b, CADM2, FAK, phosphor-AKT and the epithelial-mesenchymal transition (EMT)-related protein (N-cadherin, E-cadherin and vimentin) were analyzed by RT-qPCR, immunohistochemical staining, immunofluorescence assay or western blot, respectively. Xenograft mouse models were used to analyze the role of the FOXO3a in breast cancer.ResultsFOXO3a was down-regulated and TWIST-1 was up-regulated in breast cancer tissues. Overexpression of FOXO3a or knockdown of TWIST-1 suppressed the proliferation, invasion, migration and EMT of breast cancer cells. Overexpression of TWIST-1 could reverse the effect of FOXO3a on the proliferation, invasion, migration and EMT of breast cancer. Moreover, FOXO3a suppressed the growth and metastasis of breast cancer by targeting TWIST1 in vivo.ConclusionFOXO3a inhibited the EMT and metastasis of breast cancer via TWIST-1/miR-10b/CADM2 axis.  相似文献   

10.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   

11.
BackgroundGastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and chemoresistance is a major cause for its poor prognosis. Long non-coding RNAs (lncRNAs) are associated with cancer chemoresistance. The current study sought to explore the mechanism of lncRNA HNF1A antisense RNA 1 (HNF1A-AS1) in mediating 5-fluorouracil (5-FU) resistance of GC.MethodsqRT-PCR was performed to detect the expression level of HNF1A-AS1 in GC tissues and cells. Abnormal expression of HNF1A-AS1 in GC cells was induced by lentivirus infection. Protein levels of EIF5A2, E-Cadherin, Vimentin and N-Cadherin were detected using western blot. Competitive endogenous RNA (ceRNA) mechanisms were explored through luciferase assays and RNA immunoprecipitation (RIP) assays. Functional experiments of chemoresistance were performed by CCK-8 assays, colony formation assays and flow cytometry with the treatment of 5-FU. Mouse tumor xenograft assays were performed to verify the findings in vivo.ResultsThe findings showed HNF1A-AS1 was significantly upregulated in GC tissues especially in chemoresistance group. Findings from in vitro and in vivo experiments showed HNF1A-AS1 increased cell viability and proliferation, repressed apoptosis and promoted xenograft tumors growth in the presence of 5-FU. Mechanistic studies revealed HNF1A-AS1 promoted chemoresistance by facilitating epithelial mesenchymal transition (EMT) process through upregulating EIF5A2 expression and HNF1A-AS1 acted as a sponge of miR-30b-5p.ConclusionsThe findings from the current study showed HNF1A-AS1 promoted 5-FU resistance by acting as a ceRNA of miR-30b-5p and promoting EIF5A2-induced EMT process in GC. This indicates that HNF1A-AS1 is a potential therapeutic target for alleviating GC chemoresistance.  相似文献   

12.
摘要 目的:探讨环状RNA MRPS35(circMRPS35)对胃癌(GC)细胞增殖、凋亡、迁移和侵袭的调控机制。方法:体外培养人GC细胞系(HGC-27、MGC-803、MKN45和AGS)和正常胃上皮GES-1细胞,实时荧光定量PCR(RT-qPCR)检测circMRPS35、miR-130a-3p和锌环指蛋白3(ZNRF3)mRNA表达。另取MGC-803细胞,分为对照组、pc-NC组、pc-circMRPS35组、pc-circMRPS35+miR-NC组、pc-circMRPS35+miR-130a-3p组,采用Lipofectamine 3000进行质粒转染。RT-qPCR检测circMRPS35、miR-130a-3p和ZNRF3 mRNA表达,Western blot检测ZNRF3蛋白表达,CCK-8法、流式细胞术检测细胞增殖与凋亡,划痕实验和Transwell小室实验检测细胞迁移与侵袭能力,裸鼠移植瘤实验探究circMRPS35对GC细胞体内生长的影响。双荧光素酶报告基因检测miR-130a-3p与circMRPS35或ZNRF3的靶标关系。结果:GC细胞系中circMRPS35和ZNRF3 mRNA呈低表达,miR-130a-3p呈高表达(均P<0.05)。过表达circMRPS35可降低miR-130a-3p,上调ZNRF3 mRNA和蛋白水平,抑制细胞增殖、迁移和侵袭,并促进细胞凋亡(均P<0.05);circMRPS35过表达对GC细胞恶性行为和裸鼠移植瘤生长的抑制作用可被miR-130a-3p mimic逆转(P<0.05)。双荧光素酶实验结果显示,过表达miR-130a-3p可降低circMRPS35-WT和ZNRF3-WT的荧光素酶活性(P<0.05)。结论:circMRPS35可能通过miR-130a-3p/ZNRF3轴抑制GC细胞的增殖、迁移和侵袭,并促进细胞凋亡。  相似文献   

13.
BackgroundHepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and leads to a high death rate. Research on circular RNAs (circRNAs) suggests that circRNAs are promising biomarkers for cancer treatment. This study aimed to explore the function of a novel circRNA (circ-CSPP1) in HCC.MethodsCirc-CSPP1 was obtained from the microarray data downloaded from the Gene Expression Omnibus (GEO) database. The expression of circ-CSPP1, miR-493-5p and high mobility group box 1 (HMGB1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, colony formation ability, migration and invasion were monitored using cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and transwell assay, respectively. The protein levels of CyclinD1, Vimentin, matrix metallopeptidase 9 (MMP-9) and HMGB1 were detected by western blot. Xenograft models were established to investigate the function of circ-CSPP1 in vivo. The association between miR-493-5p and circ-CSPP1 or HMGB1 was predicted by the online tool starBase and ensured by dual-luciferase reporter assay.ResultsThe expression of circ-CSPP1 and HMGB1 was elevated, while the expression of miR-493-5p was declined in HCC tissues and cells. Circ-CSPP1 knockdown not only depleted HCC cell proliferation, formation, migration and invasion in vitro but also inhibited tumor growth in vivo. MiR-493-5p was a target of circ-CSPP1, and HMGB1 was a target of miR-493-5p. Rescue experiments presented that miR-493-5p deficiency reversed the effects of circ-CSPP1 knockdown, and HMGB1 overexpression reversed the effects of miR-493-5p restoration. Circ-CSPP1 sponged miR-493-5p to regulate HMGB1 expression.ConclusionKnockdown of circ-CSPP1 suppressed HCC development both in vitro and in vivo by upregulation of miR-493-5p and downregulation of HMGB1, hinting that circ-CSPP1 participated in HCC pathogenesis.  相似文献   

14.
BackgroundCircular RNAs (circRNAs) are reported to be associated with multiple biological processes in human cancers. However, there are still numerous circRNAs whose functions remain unclear. The aim of this study was to investigate the role of circ_0011058 in papillary thyroid cancer (PTC).MethodsQuantitative real-time PCR (qPCR) was utilized to detect the expression of circ_0011058, microRNA-335-5p (miR-335-5p) and Yes-associated Protein 1 (YAP1). Cell proliferation was detected using cell counting kit-8 (CCK-8) assay and EdU assay. Cell apoptosis was detected by flow cytometry assay. Angiogenesis ability was assessed using tube formation assay. The expression of angiogenesis-related proteins and YAP1 protein was detected by western blot. Radioresistance was examined using colony formation assay. The binding relationship between miR-335-5p and circ_0011058 or YAP1 was verified by dual-luciferase reporter assay, pull-down assay and RIP assay. Xenograft models were constructed to ensure the role of circ_0011058.ResultsCirc_0011058 expression was aberrantly elevated in PTC tissues and cells. The downregulation of circ_0011058 suppressed proliferation, angiogenesis and radioresistance in PTC cells. MiR-335-5p was defined as a target of circ_0011058, and miR-335-5p inhibition reversed the effects of circ_0011058 downregulation. In addition, YAP1 was a target of miR-335-5p, and circ_0011058 positively regulated YAP1 expression by targeting miR-335-5p. MiR-335-5p restoration inhibited proliferation, angiogenesis and radioresistance in PTC cells, while YAP1 overexpression abolished these effects. Animal study showed that circ_0011058 knockdown inhibited tumor growth in vivo.ConclusionCirc_0011058 promoted PTC cell proliferation, angiogenesis and radioresistance by upregulating YAP1 via acting as miR-335-5p sponge.  相似文献   

15.
16.
Gastric cancer (GC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Accumulating evidence reported that microRNA (miR)-133a was involved in GC. This study aimed to investigate the function and mechanism of miR-133a in the development and progression of GC. The expression of miR-133a and presenilin 1 (PSEN1) in two GC cell lines, SGC-7901 and BGC-823, were inhibited and overexpressed by transient transfections. Thereafter, cell viability, migration, and apoptosis were measured by trypan blue exclusion assay, transwell migration assay, and flow cytometry assay, respectively. Dual-luciferase reporter assay was conducted to verify whether PSEN1 was a direct target of miR-133a. Furthermore, quantitative real-time polymerase chain reaction and Western blot analysis were mainly performed to assess the expression changes of epithelial-mesenchymal transition (EMT)-associated proteins, apoptosis-related proteins, and Notch pathway proteins. MiR-133a inhibitor significantly increased cell viability and migration, while miR-133a mimic decreased cell viability, migration, and induced apoptosis. miR-133a suppression accelerated transforming growth factor-β1 (TGF-β1)-induce EMT, as evidenced by upregulation of E-cadherin, and downregulation of N-cadherin, vimentin, and Slug. Of contrast, miR-133a overexpression blocked TGF-β1-induce EMT by altering these factors. PSEN1 was a direct target of miR-133a, and suppression of PSEN1 abolished the promoting functions of miR-133 suppression on cell growth and metastasis. Moreover, PSEN1 inhibition decreased Notch 1, Notch 2, and Notch 3 protein expressions. This study demonstrates an antigrowth and antimetastasis role of miR-133a in GC cells. Additionally, miR-133a acts as a tumor suppressor may be via targeting PSEN1.  相似文献   

17.
18.
《Genomics》2021,113(6):3512-3522
ObjectiveOur study aims to identify the impact of histone deacetylase 3 (HDAC3) and microRNA-376c-3p (miR-376c-3p) on gastric cancer (GC) by targeting wingless-type MMTV integration site family member 2b (WNT2b).MethodsLevels of miR-376c-3p, HDAC3 and WNT2b were assessed. GC cells were treated with altered HDAC3 or miR-376c-3p to evaluate their biological functions, and rescue experiment was performed to assess the effect of WNT2b on GC cells. The tumor growth in vivo was observed.ResultsHDAC3 and WNT2b were up-regulated while miR-376c-3p was reduced in GC tissues and cell lines. The inhibited HDAC3 or elevated miR-376c-3p could restrain malignant behaviors of GC cells in vitro, and also suppress the xenograft growth. WNT2b silencing reduced the effect of miR-376c-3p inhibition while WNT2b overexpression mitigated that of miR-376c-3p promotion on GC cell growth.ConclusionInhibiting HDAC3 promotes miR-376c-3p to suppress malignant phenotypes of GC cells via reducing WNT2b, thereby restricting GC development.  相似文献   

19.
20.
BackgroundOur previous study demonstrated that lncRNA GIHCG is upregulated in renal cell carcinoma (RCC) and that knockdown of lncRNA GIHCG suppresses the proliferation and migration of RCC cells. However, the mechanism of lncRNA GIHCG in RCC needs further exploration.MethodsThe proliferation, cell cycle, migration, and apoptosis of RCC cells were tested using CCK-8, flow cytometry, wound healing and Annexin-V/-FITC/PI flow cytometry assays, respectively. Dual-luciferase reporter and RNA pull-down or RNA immunoprecipitation assays (RIPs) were performed to analyze the interactions among lncRNA GIHCG, miR-499a-5p and XIAP. A tumour xenograft study was conducted to verify the function of lncRNA GIHCG in RCC development in vivo.ResultsKnockdown of lncRNA GIHCG inhibited cell proliferation and migration and induced G0/G1 arrest while promoting apoptosis. Overexpression of lncRNA GIHCG led to the opposite results. LncRNA GIHCG sponged miR-499a-5p and downregulated its expression in RCC cells. MiR-499a-5p overexpression suppressed RCC cell growth. MiR-499a-5p targeted XIAP and inhibited its expression. LncRNA GIHCG knockdown reduced the growth of tumour xenografts in vivo and the expression of XIAP while increasing miR-499a-5p levels.ConclusionLncRNA GIHCG accelerated the development of RCC by targeting miR-499a-5p and increasing XIAP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号