首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal cell carcinoma (RCC), with high morbidity and mortality, is one of the top ten serious cancers. Due to limited therapies and little knowledge about the mechanism underlying RCC, overall survival of RCC patients is poor. UBE2C is a member of ubiquitin modification system and promotes carcinogenesis in cancer, but its role in RCC is unknown. Based on the TCGA (The Cancer Genome Atlas) data, UBE2C was over-expressed in a total of 525 RCC tissues and displayed higher expression in advanced tissues (stage IV vs stage I, p<0.05). RT-qPCR and IHC analysis confirmed over-expression of UBE2C in 90 of clinical RCC tissues. Further, UBE2C was associated with clinical factors including TNM stage, gender, and pathological stage. And higher UBE2C expression predicted shorter overall survival and progression-free survival. Both univariate and multivariate COX analysis suggested UBE2C as a critical gene in RCC. Then GO and KEGG analysis showed that cell cycle and DNA replication pathways were two top signaling pathways affected by UBE2C. In vitro assay showed that knockdown of UBE2C in 786-O cells inhibited proliferation and migration significantly. Therefore, this study proves that UBE2C is an important gene in RCC and is essential to proliferation and migration of RCC.Key words: UBE2C, GO analysis, KEGG analysis, renal cell carcinoma  相似文献   

2.
3.
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

4.
With new frontiers of pharmaceutical therapies focusing on tumor growth and angiogenesis, understanding the interaction between immune system and tumor microenvironment has become ever more important. Chemokines and chemokine receptors appear to play an integral role in tumor characteristics. Evidence suggests CXCR4, CXCL5, CXCR7, and stromal derived factor-1 appear to be crucial in survival, growth, and metastasis of renal cell carcinoma. As the role of chemokines in renal cancer is becoming more evident, further research will lead to a better understanding of tumor biology and the development of new therapeutic targets to help improve survival.Key words: Chemokine, Cytokines, Renal cell carcinoma, OncocytomaRenal cell carcinoma (RCC) is the seventh most common malignant condition among men and twelfth among women, representing 2% to 3% of all cancers.1 Thirty to 40% of affected patients present with stage III or stage IV disease. It has an estimated incidence of 57,760 per year, which has increased 2% to 3% per year with no significant decrease in mortality rates.2 Median survival of patients with metastatic disease is merely 13 months.1 Studies have established that tumor and stroma interact through a variety of cytokines, chemokines, and growth factors.3 Recent evidence suggests chemokines may facilitate tumor growth, survival, and metastatic potential of various cancers including RCC. Chemokines have a potential to be utilized as tumor markers and novel targets of antiangiogenic therapy. Investigating the role of various chemokines in the development and metastasis of cancer has become a major focus of contemporary research. We examined the relevant literature and present a review of selected chemokines and their roles in renal cell cancers.  相似文献   

5.
6.
Rationale: MicroRNAs (miRNAs) are endogenous ~22nt RNAs that play critical regulatory roles in various biological and pathological processes, including various cancers. Their function in renal cancer has not been fully elucidated. It has been reported that miR-196a can act as oncogenes or as tumor suppressors depending on their target genes. However, the molecular target for miR-196a and the underlying mechanism in miR-196a promoted cell migration and invasion in renal cancer is still not clear.Methods: The expression, survival and correlation between miR-196a and BRAM1 were investigated using TCGA analysis and validated by RT-PCR and western blot. To visualize the effect of Bram1 on tumor metastasis in vivo, NOD-SCID gamma (NSG) mice were intravenously injected with RCC4 cells (106 cells/mouse) or RCC4 overexpressing Bram1. In addition, cell proliferation assays, migration and invasion assays were performed to examine the role of miR-196a in renal cells in vitro. Furthermore, immunoprecipitation was done to explore the binding targets of Bram1.Results: TCGA gene expression data from renal clear cell carcinoma patients showed a lower level of Bram1 expression in patients'' specimens compared to adjacent normal tissues. Moreover, Kaplan‑Meier survival data clearly show that high expression of Bram1correlates to poor prognosis in renal carcinoma patients. Our mouse metastasis model confirmed that Bram1 overexpression resulted in an inhibition in tumor metastasis. Target-prediction analysis and dual-luciferase reporter assay demonstrated that Bram1 is a direct target of miR-196a in renal cells. Further, our in vitro functional assays revealed that miR-196a promotes renal cell proliferation, migration, and invasion. Rescue of Bram1 expression reversed miR-196a-induced cell migration. MiR-196a promotes renal cancer cell migration by directly targeting Bram1 and inhibits Smad1/5/8 phosphorylation and MAPK pathways through BMPR1A and EGFR.Conclusions: Our findings thus provide a new mechanism on the oncogenic role of miR-196a and the tumor-suppressive role of Bram1 in renal cancer cells. Dysregulated miR-196a and Bram1 represent potential prognostic biomarkers and may have therapeutic applications in renal cancer.  相似文献   

7.
8.
Co-expression of erythropoietin (Epo) and erythropoietin receptor (EpoR) has been found in various non-hematopoietic cancers including hereditary and sporadic renal cell carcinomas (RCC), but the Epo/EpoR autocrine and paracrine mechanisms in tumor progression have not yet been identified. In this study, we used RNA interference method to down-regulate EpoR to investigate the function of Epo/EpoR pathway in human RCC cells. Epo and EpoR co-expressed in primary renal cancer cells and 6 human RCC cell lines. EpoR signaling was constitutionally phosphorylated in primary renal cancer cells, 786-0 and Caki-1 cells, and recombinant human Epo (rhEpo) stimulation had no significant effects on further phosphorylation of EpoR pathway, proliferation, and invasiveness of the cells. Down-regulation of EpoR expression in 786-0 cells by lentivirus-introduced siRNA resulted in inhibition of growth and invasiveness in vitro and in vivo, and promotion of cell apoptosis. In addition, rhEpo stimulation slightly antagonized the anti-tumor effect of Sunitinib on 786-0 cells. Sunitinib could induce more apoptotic cells in 786-0 cells with knockdown EpoR expression. Our results suggested that Epo/EpoR pathway was involved in cell growth, invasion, survival, and sensitivity to the multi-kinases inhibitor Sunitinib in RCC cells.  相似文献   

9.
Renal cell carcinoma (RCC) is the most lethal urological malignancy with high risk of recurrence; thus, new prognostic biomarkers are needed. In this study, a new RCC antigen, PTPL1 associated RhoGAP1 (PARG1), was identified by using serological identification of recombinant cDNA expression cloning with sera from RCC patients. PARG1 protein was found to be differentially expressed in RCC cells among patients. High PARG1 expression is significantly correlated with various clinicopathological factors relating to cancer cell proliferation and invasion, including G3 percentage (P = .0046), Ki-67 score (p expression is also correlated with high recurrence of N0M0 patients (P = .0084) and poor prognosis in RCC patients (P = .0345). Multivariate analysis has revealed that high PARG1 expression is an independent factor for recurrence (P = .0149) of N0M0 RCC patients. In in vitro studies, depletion of PARG1by siRNA in human RCC cell lines inhibited their proliferation through inducing G1 cell cycle arrest via upregulation of p53 and subsequent p21Cip1/Waf1, which are mediated by increased RhoA-ROCK activities. Similarly, PARG1 depletion cells inhibited invasion ability via increasing RhoA-ROCK activities in the RCC cell lines. Conversely, overexpression of PARG1 on human embryonic kidney cell line HEK293T promotes its cell proliferation and invasion. These results indicate that PARG1 plays crucial roles in progression of human RCC in increasing cell proliferation and invasion ability via inhibition of the RhoA-ROCK axis, and PARG1 is a poor prognostic marker, particularly for high recurrence of N0M0 RCC patients.  相似文献   

10.
11.
The genetic cause of some familial nonsyndromic renal cell carcinomas (RCC) defined by at least two affected first-degree relatives is unknown. By combining whole-exome sequencing and tumor profiling in a family prone to cases of RCC, we identified a germline BAP1 mutation c.277A>G (p.Thr93Ala) as the probable genetic basis of RCC predisposition. This mutation segregated with all four RCC-affected relatives. Furthermore, BAP1 was found to be inactivated in RCC-affected individuals from this family. No BAP1 mutations were identified in 32 familial cases presenting with only RCC. We then screened for germline BAP1 deleterious mutations in familial aggregations of cancers within the spectrum of the recently described BAP1-associated tumor predisposition syndrome, including uveal melanoma, malignant pleural mesothelioma, and cutaneous melanoma. Among the 11 families that included individuals identified as carrying germline deleterious BAP1 mutations, 6 families presented with 9 RCC-affected individuals, demonstrating a significantly increased risk for RCC. This strongly argues that RCC belongs to the BAP1 syndrome and that BAP1 is a RCC-predisposition gene.  相似文献   

12.
As the first identified N6-methyladenosine (m6A) demethylase, fat mass and obesity-associated (FTO) protein is associated with fatty acid synthase (FASN) and lipid accumulation. However, little is known about the regulatory role of FTO in the expression of FASN and de novo lipogenesis through m6A modification. In this study, we used FTO small interfering RNA to explore the effects of FTO knockdown on hepatic lipogenesis and its underlying epigenetic mechanism in HepG2 cells. We found that knockdown of FTO increased m6A levels in total RNA and enhanced the expression of YTH domain family member 2 which serves as the m6A-binding protein. The de novo lipogenic enzymes and intracellular lipid content were significantly decreased under FTO knockdown. Mechanistically, knockdown of FTO dramatically enhanced m6A levels in FASN messenger RNA (mRNA), leading to the reduced expression of FASN mRNA through m6A-mediated mRNA decay. The protein expressions of FASN along with acetyl CoA carboxylase and ATP-citrate lyase were further decreased, which inhibited de novo lipogenesis, thereby resulting in the deficiency of lipid accumulation in HepG2 cells and the induction of cellular apoptosis. The results reveal that FTO regulates hepatic lipogenesis via FTO-dependent m6A demethylation in FASN mRNA and indicate the critical role of FTO-mediated lipid metabolism in the survival of HepG2 cells. This study provides novel insights into a unique RNA epigenetic mechanism by which FTO mediates hepatic lipid accumulation through m6A modification and indicates that FTO could be a potential target for obesity-related diseases and cancer.  相似文献   

13.
14.
《Endocrine practice》2015,21(5):461-467
Objective: Patients with multiple primary malignancies may exhibit unique clinical characteristics that suggest a common predisposition or lead to different disease management. Given the association of primary thyroid (TC) and renal cell carcinoma (RCC), we characterized the clinicopathologic features of patients treated for both malignancies (TC/RCC).Methods: TC/RCC patients were identified through the institutional tumor registry and using data compiled by retrospective chart review. To compare with broader institutional and national cohorts, we examined patients admitted with TC or RCC institution-wide and reviewed the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) program for these cancers.Results: Overall, 51% of patients developed TC before RCC, 27% developed RCC before TC, and 22% were diagnosed within 1 year of each other. The mean age at TC diagnosis was 52 ± 15 (18–77), which was significantly older than institutional TC patients (45 ± 16.5 years, P≤.0001), and the mean age at RCC diagnosis was 59 ± 12 (32–79). The TC/RCC cohort had a balanced sex distribution (51% female) compared with the institutional TC group (67% female, P = .0003) and the institutional RCC group (31% female, P<.0001). Similar age and sex ratio differences were seen when compared with SEER cohorts. In the TC/RCC cohort, 43% of patients developed other cancers (52% of females, 33% of males; P = .04); among the females, 45% developed breast cancer.Conclusion: Individuals who develop both TC and RCC may represent a unique subset of cancer patients. Further prospective research is warranted to explore the unanticipated association with breast cancer in female patients and to investigate a possible common pathogenesis underlying these malignancies.Abbreviations: RCC = renal cell carcinoma SEER = Surveillance, Epidemiology, and End Results SPC = second primary cancer SPTC = subsequent primary thyroid cancer TC = thyroid cancer VHL = von Hippel-Lindau  相似文献   

15.
Retinoic acid receptor responder 1 (RARRES1) is among the most commonly methylated loci in multiple cancers. RARRES1 regulates mitochondrial and fatty acid metabolism, stem cell differentiation, and survival of immortalized cell lines in vitro. Here, we created constitutive Rarres1 knockout (Rarres1-/-) mouse models to study RARRES1 function in vivo. Rarres1-/- embryonic fibroblasts regulated tubulin glutamylation, cell metabolism, and survival, recapitulating RARRES1 function in immortalized cell lines. In two mouse strains, loss of Rarres1 led to a markedly increased dose-dependent incidence of follicular lymphoma (FL). Prior to lymphoma formation, Rarres1-/- B cells have compromised activation, maturation, differentiation into antibody-secreting plasma cells, and cell cycle progression. Rarres1 ablation increased B cell survival and led to activation of the unfolded protein response (UPR) and heat shock response (HSR). Rarres1 deficiency had differential effects on cellular metabolism, with increased bioenergetic capacity in fibroblasts, and minor effects on bioenergetics and metabolism in B cells. These findings reveal that RARRES1 is a bona fide tumor suppressor in vivo and the deletion in mice promotes cell survival, and reduces B cell differentiation with B cell autonomous and non-autonomous functions.  相似文献   

16.
Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx f/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.  相似文献   

17.
SNPs (single nucleotide polymorphisms) on a chromosome 16 locus encompassing FTO, as well as IRX3, 5, 6, FTM and FTL are robustly associated with human obesity. FTO catalyses the Fe(II)- and 2OG-dependent demethylation of RNA and is an AA (amino acid) sensor that couples AA levels to mTORC1 (mammalian target of rapamycin complex 1) signalling, thereby playing a key role in regulating growth and translation. However, the cellular compartment in which FTO primarily resides to perform its biochemical role is unclear. Here, we undertake live cell imaging of GFP (green fluorescent protein)-FTO, and demonstrate that FTO resides in both the nucleus and cytoplasm. We show using ‘FLIP’ (fluorescence loss in photobleaching) that a mobile FTO fraction shuttles between both compartments. We performed a proteomic study and identified XPO2 (Exportin 2), one of a family of proteins that mediates the shuttling of proteins between the nucleus and the cytoplasm, as a binding partner of FTO. Finally, using deletion studies, we show that the N-terminus of FTO is required for its ability to shuttle between the nucleus and cytoplasm. In conclusion, FTO is present in both the nucleus and cytoplasm, with a mobile fraction that shuttles between both cellular compartments, possibly by interaction with XPO2.  相似文献   

18.
Gastric cancer (GC) is the fifth most common tumor and the third most deadly cancer worldwide. N6-methyladenosine (m6A) modification has been reported to play a regulatory role in human cancers. However, the exact role of m6A in GC remains largely unknown, and the dysregulation of m6A on mitochondrial metabolism has never been studied. In the present study, we demonstrated that FTO, a key demethylase for RNA m6A modification, was up-regulated in GC tissues, especially in tissues with liver metastasis. Functionally, FTO acted as a promoter for the proliferation and metastasis in GC. Moreover, FTO enhanced the degradation of caveolin-1 mRNA via its demethylation, which regulated the mitochondrial fission/fusion and metabolism. Collectively, our current findings provided some valuable insights into FTO-mediated m6A demethylation modification and could be used as a new strategy for more careful surveillance and aggressive therapeutic intervention.Subject terms: Cancer genomics, Gastrointestinal diseases  相似文献   

19.
Renal cell carcinoma (RCC) is the most common tumor arising from the cells in the lining of tubules in the kidney. Some members of the Ca2+-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of some types of cancer cells. In this study, we investigated the role of TRPC6 in the development of human RCC. RT-PCR and Western blotting were used to investigate TRPC6 expression in 1932 and ACHN cells. Immunohistochemical techniques were applied to study TRPC6 expression in 60 cases of RCC primary tissue samples and 10 cases of corresponding normal renal tissues. To inhibit TRPC6 activity or expression, RNA interference was used. The effects of TRPC6 channels on RCC cell viability and cell cycle progression were investigated by MTT and flow cytometry. TRPC6 was expressed in 1932 and ACHN cells. TRPC6 protein was detected in 73.3 % of RCC samples, and there was a significant difference compared with the normal renal samples (30 %) (p < 0.05). Moreover the level of TRPC6 expression was associated with RCC Fuhrman grade (p < 0.01). Blockade of TRPC6 channels in ACHN cells suppressed basal cell proliferation and partially inhibited HGF-induced cell proliferation. Furthermore, inhibition of TRPC6 channels expression prolonged the transition through G2/M phase in ACHN cells. In summary, expression of TRPC6 is markedly increased in RCC specimens and associated with RCC histological grade. TRPC6 plays an important role in ACHN cells proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号