首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults. Autoantibodies against M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain-containing 7A (THSD7A), which mainly belong to the IgG4 subclass, were reported as associated antibodies for the development of MN. Although PLA2R is a major target antigen for idiopathic MN, the prevalence of MN patients seropositive for PLA2R in Japan is lower than that in other countries. In this study, we conducted immunohistochemical analysis of the presence of THSD7A and PLA2R in renal specimens of MN patients to estimate the prevalence of THSD7A/PLA2R-related idiopathic MN in Japan. Enhanced granular expression of THSD7A and PLA2R was detected in 9.1% and 52.7%, respectively, of the patients with idiopathic MN. Although none of patients with secondary MN displayed enhanced granular expression of THSD7A, 5.4% of them had enhanced granular expression of PLA2R. In conclusion, the prevalence of enhanced granular expression of THSD7A in the glomeruli of Japanese patients with idiopathic MN was higher than the prevalence of MN patients seropositive for THSD7A in USA and Europe.  相似文献   

2.
Little is known about the biological functions of the phospholipase A2 receptor (PLA2R1) except that it has the ability to bind a few secreted phospholipases A2 (sPLA2′s). We have previously shown that PLA2R1 regulates senescence in normal human cells. In this study, we investigated the ability of PLA2R1 to control cancer cell growth. Analysis of expression in cancer cells indicates a marked PLA2R1 decrease in breast cancer cell lines compared to normal or nontransformed human mammary epithelial cells. Accordingly, PLA2R1 ectopic expression in PLA2R1-negative breast cancer cell lines led to apoptosis, whereas a prosenescence response was predominantly triggered in normal cells. PLA2R1 structure–function studies and the use of chemical inhibitors of sPLA2-related signaling pathways suggest that the effect of PLA2R1 is sPLA2-independent. Functional experiments demonstrate that PLA2R1 regulation of cell death is driven by a reactive oxygen species (ROS)-dependent mechanism. While screening for ROS-producing complexes involved in PLA2R1 biological responses, we identified a critical role for the mitochondrial electron transport chain in PLA2R1-induced ROS production and cell death. Taken together, this set of data provides evidence for an important role of PLA2R1 in controlling cancer cell death by influencing mitochondrial biology.  相似文献   

3.
The phospholipase A2 receptor 1 (PLA2R1 or PLA2R) was isolated twenty years ago for its ability to bind several secretory phospholipase A2 proteins (sPLA2). Since its identification, it has attracted only a limited interest, mainly in the sPLA2 biology field, as it is viewed uniquely as a regulator of sPLA2 activities. Recent discoveries outline novel important functions of this gene in cancer biology. Indeed, PLA2R1 gain or loss of function experiments in vitro and in vivo shows that this receptor promotes several tumor suppressive responses including senescence, apoptosis and inhibition of transformation. Supporting a tumor suppressive role of PLA2R1, its expression decreases in numerous cancers, and known oncogenes such as HIF2α and c-MYC repress its expression. PLA2R1 promoter methylation, a classical way to repress tumor suppressive gene expression in cancer cells, is observed in leukemia, in kidney and in breast cancer cells. Mechanistically, PLA2R1 activates the kinase JAK2 and orients its activity towards a tumor suppressive one. PLA2R1 also promotes accumulation of reactive oxygen species which induce cell death and senescence. This review compiles recent data demonstrating an unexpected tumor suppressive role of PLA2R1 and outlines the future work needed to improve our knowledge of the functions of this gene in cancer.  相似文献   

4.
Kuo MW  Wang CH  Wu HC  Chang SJ  Chuang YJ 《PloS one》2011,6(12):e29000

Background

Thrombospondin type I domain containing 7A (THSD7A) is a novel neural protein that is known to affect endothelial migration and vascular patterning during development. To further understand the role of THSD7A in angiogenesis, we investigated the post-translational modification scheme of THS7DA and to reveal the underlying mechanisms by which this protein regulates blood vessel growth.

Methodology/Principal Findings

Full-length THSD7A was overexpressed in human embryonic kidney 293T (HEK293T) cells and was found to be membrane associated and N-glycosylated. The soluble form of THSD7A, which is released into the cultured medium, was harvested for further angiogenic assays. We found that soluble THSD7A promotes human umbilical vein endothelial cell (HUVEC) migration and tube formation. HUVEC sprouts and zebrafish subintestinal vessel (SIV) angiogenic assays further revealed that soluble THSD7A increases the number of branching points of new vessels. Interestingly, we found that soluble THSD7A increased the formation of filopodia in HUVEC. The distribution patterns of vinculin and phosphorylated focal adhesion kinase (FAK) were also affected, which implies a role for THSD7A in focal adhesion assembly. Moreover, soluble THSD7A increased FAK phosphorylation in HUVEC, suggesting that THSD7A is involved in regulating cytoskeleton reorganization.

Conclusions/Significance

Taken together, our results indicate that THSD7A is a membrane-associated N-glycoprotein with a soluble form. Soluble THSD7A promotes endothelial cell migration during angiogenesis via a FAK-dependent mechanism and thus may be a novel neuroangiogenic factor.  相似文献   

5.
6.
Anti-phospholipase A2 receptor autoantibody (PLA2R-Ab) plays a critical role in the pathogenesis of primary membranous nephropathy (PMN), an autoimmune kidney disease characterized by immune deposits in the glomerular subepithelial spaces and proteinuria. However, the mechanism of how PLA2R-Abs interact with the conformational epitope(s) of PLA2R has remained elusive. PLA2R is a single transmembrane helix receptor containing ten extracellular domains that begin with a CysR domain followed by a FnII and eight CTLD domains. Here, we examined the interactions of PLA2R-Ab with the full PLA2R protein, N-terminal domain truncations, and C-terminal domain deletions under either denaturing or physiological conditions. Our data demonstrate that the PLA2R-Abs against the dominant epitope (the N-terminal CysR-CTLD1 triple domain) possess weak cross-reactivities to the C-terminal domains beyond CTLD1. Moreover, both the CysR and CTLD1 domains are required to form a conformational epitope for PLA2R-Ab interaction, with FnII serving as a linker domain. Upon close examination, we also observed that patients with newly diagnosed PMN carry two populations of PLA2R-Abs in sera that react to the denatured CysR-CTLD3 (the PLA2R-Ab1) and denatured CysR-CTLD1 (the PLA2R-Ab2) domain complexes on Western blots, respectively. Furthermore, the PLA2R-Ab1 appeared at an earlier time point than PLA2R-Ab2 in patients, whereas the increased levels of PLA2R-Ab2 coincided with the worsening of proteinuria. In summary, our data support that an integrated folding of the three PLA2R N-terminal domains, CysR, FnII, and CTLD1, is a prerequisite to forming the PLA2R conformational epitope and that the dominant epitope-reactive PLA2R-Ab2 plays a critical role in PMN clinical progression.  相似文献   

7.
Genome variability of host genome and cancer cells play critical role in diversity of response to existing therapies and overall success in treating oncological diseases. In chronic myeloid leukemia targeted therapy with tyrosine kinase inhibitors demonstrates high efficacy in most of the patients. However about 15 % of patients demonstrate primary resistance to standard therapy. Whole exome sequencing is a good tool for unbiased search of genetic variations important for prognosis of survival and therapy efficacy in many cancers. We apply this approach to CML patients with optimal response and failure of tyrosine kinase therapy. We analyzed exome variations between optimal responders and failures and found 7 variants in cancer-related genes with different genotypes in two groups of patients. Five of them were found in optimal responders: rs11579366, rs1990236, rs176037, rs10653661, rs3803264 and two in failures: rs3099950, rs9471966. These variants were found in genes associated with cancers (ANKRD35, DNAH9, MAGEC1, TOX3) or participating in cancer-related signaling pathways (THSD1, MORN2, PTCRA). We found gene variants which may become early predictors of the therapy outcome and allow development of new early prognostic tests for estimation of therapy efficacy in CML patients. Normal genetic variation may influence therapy efficacy during targeted treatment of cancers.  相似文献   

8.
Many cancers cause malignant effusions. The presence of malignant cells in effusions has implications in diagnosis, tumour staging and prognosis. The detection of malignant cells currently presents a challenge for cytopathologists. New adjunctive methods are needed. Although the effusions provide excellent materials for molecular assay, the available molecular markers are extremely limited, which hinders its clinical application. MN/CA9 has proved to be a valuable marker in many cancers such as lung, breast, colon, kidney, etc. The present study was to evaluate MN/CA9 as a new molecular marker for the detection of cancer cells in pleural effusions. Seventy-one pleural effusions including 59 malignant effusions from patients with cancer, and 12 patients with benign diseases as a control, were subjected to RT-PCR for detection of MN/CA9 gene expression. MN/CA9 gene expression was detected in 53/59 (89.8%) pleural effusions from cancer patients (15/16 for breast cancers, 10/11 for lung cancers, 4/4 for ovary cancers, 2/3 for colon–rectal cancers, 5/6 for cancers of unknown site, 7/8 for mesothelioma and 10/11 for other cancers). Furthermore, MN/CA9 was positive in 13/18 (72.2%) of cytologically negative effusions of cancer patients. MN/CA9 was detected in only 1/12 (8.3%) effusions from the control patients (p<0.01). The sensitivity and specificity of MN/CA9 gene expression were, respectively, 89.8% and 91.7%. Our preliminary results suggest that MN/CA9 could be a potential marker for the detection of malignant cells in effusions. A large-scale study is needed to confirm these results.  相似文献   

9.
Many cancers cause malignant effusions. The presence of malignant cells in effusions has implications in diagnosis, tumour staging and prognosis. The detection of malignant cells currently presents a challenge for cytopathologists. New adjunctive methods are needed. Although the effusions provide excellent materials for molecular assay, the available molecular markers are extremely limited, which hinders its clinical application. MN/CA9 has proved to be a valuable marker in many cancers such as lung, breast, colon, kidney, etc. The present study was to evaluate MN/CA9 as a new molecular marker for the detection of cancer cells in pleural effusions. Seventy-one pleural effusions including 59 malignant effusions from patients with cancer, and 12 patients with benign diseases as a control, were subjected to RT-PCR for detection of MN/CA9 gene expression. MN/CA9 gene expression was detected in 53/59 (89.8%) pleural effusions from cancer patients (15/16 for breast cancers, 10/11 for lung cancers, 4/4 for ovary cancers, 2/3 for colon-rectal cancers, 5/6 for cancers of unknown site, 7/8 for mesothelioma and 10/11 for other cancers). Furthermore, MN/CA9 was positive in 13/18 (72.2%) of cytologically negative effusions of cancer patients. MN/CA9 was detected in only 1/12 (8.3%) effusions from the control patients (p < 0.01). The sensitivity and specificity of MN/CA9 gene expression were, respectively, 89.8% and 91.7%. Our preliminary results suggest that MN/CA9 could be a potential marker for the detection of malignant cells in effusions. A large-scale study is needed to confirm these results.  相似文献   

10.
Although aging is a major risk factor for most types of cancers, it is barely studied in this context. The transmembrane protein PLA2R1 (phospholipase A2 receptor) promotes cellular senescence, which can inhibit oncogene-induced tumor initiation. Functions and mechanisms of action of PLA2R1 during aging are largely unknown. In this study, we observed that old Pla2r1 knockout mice were more prone to spontaneously develop a wide spectrum of tumors compared to control littermates. Consistently, these knockout mice displayed increased Parp1, a master regulator of DNA damage repair, and decreased DNA damage, correlating with large human dataset analysis. Forced PLA2R1 expression in normal human cells decreased PARP1 expression, induced DNA damage and subsequent senescence, while the constitutive expression of PARP1 rescued cells from these PLA2R1-induced effects. Mechanistically, PARP1 expression is repressed by a ROS (reactive oxygen species)-Rb-dependent mechanism upon PLA2R1 expression. In conclusion, our results suggest that PLA2R1 suppresses aging-induced tumors by repressing PARP1, via a ROS–Rb signaling axis, and inducing DNA damage and its tumor suppressive responses.Subject terms: Cancer, Mechanisms of disease, DNA damage and repair, Ageing  相似文献   

11.
The high incidence (40.6%) of elevated serum pancreatic phospholipase A2 (PLA2) was demonstrated in patients with various malignancies. Serum PLA2 was significantly increased in cancer patients compared with healthy sex- and age-matched blood donors (358.4 +/- 168.0 vs. 241.7 +/- 69.0 ng/dl; p less than 0.01). No correlation was observed between serum PLA2 and carcinoembryonic antigen (CEA) in these patients. Although patients with advanced and distantly metastatic cancer of the liver, gallbladder and pancreas showed higher PLA2 levels in serum than those with early cancer, patients with other cancers showed no correlation between serum PLA2 and clinical stage. A combined assay of PLA2 and CEA increased the sensitivity of detection of cancers to 60.8%.  相似文献   

12.
We investigated whether head-and-neck cancers are associated with an increased micronucleated cell rates (MN cell rates) and whether risk factors for these cancers are associated with alterations in micronucleated lymphocytes. MN cell rates were assessed in cytokinesis-blocked lymphocytes of 57 head-and-neck cancer patients (CP) before any anticancer treatment and of 198 male and female healthy subjects (HS). In the HS group, only smoking status significantly affect MN cell rates. In CP group age, sex, tobacco status, alcohol status, tumor stage, family history of cancer had no significant effect. For the non-smokers, the comparison between MN cell rates in HS and CP adjusted for age and sex showed a significant difference. The increase of MN cell rates in non-smokers patients may be attributable to cancer status. For the smokers, the comparison of MN cell rates in HS and CP matched for age and sex showed no significant difference. Pathological status could mask the smoking effect on peripheral blood lymphocytes in patients. Moreover, it probably could partly explain why MN cell rates in matched-CP smokers and HS smokers were similar. The authors do not recommend the CBMN assay in this present form to study smoking DNA-damage effects in peripheral blood lymphocytes of cancer patients, especially for patients with upper aero-digestive tract cancers or lung cancers for which tobacco is the major risk factor.  相似文献   

13.
New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR)-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM) were then genetically modified to express an anti-L1-CAM CAR (CE7R), which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p.) administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.  相似文献   

14.
Data are presented concerning the possibility of using the micronuclei (MN) level as a biomarker for cytogenetic effects in exfoliated epithelial cells of cancer patients under therapy. The number of MN in buccal cells of cancer patients under chemotherapy are very contradictory. A significant dose-dependent increment of MN in tumor and normal epithelial cells due to radiotherapy was shown in most investigations. Evaluation of MN induced by radiotherapy in exfoliated tumor cells can potentially identify the radiosensitivity of tumors and the outcome of treatment after the first fractions of irradiation. This technique is almost completely noninvasive and easily done in accessible primary cancers (oral cavity and uterine cervix). The text was submitted by the author in English.  相似文献   

15.
According to the "monoclonal hypothesis" of atherosclerosis, several studies suggest that cancer and atherosclerosis may have several fundamental biological mechanisms in common. Therefore, an increase in the mutation rate may be involved in the pathogenesis of atherosclerotic plaques.The aim of the study was to verify the presence of chromosomal damage in peripheral blood lymphocytes in patients with coronary artery disease by using micronucleus (MN) test, a reliable biomarker in genetic and cancer risk assessment.Subjects included 53 patients with documented coronary ischemic heart disease (group I); 10 patients with valvular heart disease in absence of atherosclerotic lesions of the coronary arteries (group II) and 16 healthy subjects, age- and sex-matched (group III) were studied as controls. For each subject, two separate cultures were performed and 1000 binucleated cells were scored for the evaluation of MN frequency.The mean (+/-S.E.M.) of MN frequency were 11.9+/-1.7, 5.9+/-1.2 and 3.6+/-0.7 in groups I, II and III, respectively. The MN frequency of group I was significantly higher than that of group III (P=0.02). In group I, MN frequency increased with the number of affected vessels (6.3+/-0.7, 13.9+/-1.6, 14.9+/-5.3 for one-, two-, and three-vessel disease, respectively). Scheffe's test showed that MN frequency was significantly higher in two-vessel compared with one-vessel disease (P=0.0077). Moreover, a positive relationship was found between MN levels and the severity of the disease, calculated by the Duke scoring system (R=0.28, P=0.032), as well as the systolic blood pressure (R=0.34, P=0.009).These results suggest that coronary artery disease in humans is a condition characterized by an increase of DNA damage, positively correlated with the severity of the atherosclerotic disease.  相似文献   

16.
Autophagy is an evolutionarily conserved process for catabolizing damaged proteins and organelles in a lysosome-dependent manner. Dysregulation of autophagy may cause various diseases, such as cancer and neurodegeneration. However, the relevance of autophagy to diseases remains controversial because of the limited availability of chemical modulators. Herein, the authors developed a fluorescence-based assay for measuring activity of the autophagy protease, autophagin-1(Atg4B). The assay employs a novel reporter substrate of Atg4B composed of a natural substrate (LC3B) fused to an assayable enzyme (PLA(2)) that becomes active upon cleavage by this cysteine protease. A high-throughput screening (HTS) assay was validated with excellent Z' factor (>0.7), remaining robust for more than 5 h and suitable for screening of large chemical libraries. The HTS assay was validated by performing pilot screens with 2 small collections of compounds enriched in bioactive molecules (n = 1280 for Lopac? and 2000 for Spectrum? library), yielding confirmed hit rates of 0.23% and 0.70%, respectively. As counterscreens, PLA(2) and caspase-3 assays were employed to eliminate nonspecific inhibitors. In conclusion, the LC3B-PLA(2) reporter assay provides a platform for compound library screening for identification and characterization of Atg4B-specific inhibitors that may be useful as tools for interrogating the role of autophagy in disease models.  相似文献   

17.
Phospholipase A(2) receptor (PLA(2)R) mediates various biological responses elicited by group IB secretory phospholipase A(2) (sPLA(2)-IB). The recently cloned group X sPLA(2) (sPLA(2)-X) possesses several structural features characteristic of sPLA(2)-IB. Here, we detected a specific binding site of sPLA(2)-X in mouse osteoblastic MC3T3-E(1) cells. Cross-linking experiments demonstrated its molecular weight (180 kDa) to be similar to that of PLA(2)R. In fact, sPLA(2)-X was found to bind the recombinant PLA(2)R expressed in COS-7 cells, and its specific binding detected in mouse lung membranes was abolished by the deficiency of PLA(2)R. These findings demonstrate sPLA(2)-X to be one of the high-affinity ligands for mouse PLA(2)R.  相似文献   

18.
OBJECTIVE--To assess the value of transvaginal ultrasonography with colour blood flow imaging in detecting early ovarian cancer in women with a family history of the disease. DESIGN--Study of self referred symptomless women with a close relative who had developed the disease. Each woman was screened to detect persistent lesions and defined changes in ovarian volume. Morphological score and pulsatility index were recorded. SETTING--Ovarian screening clinic. SUBJECTS--1601 self referred women. INTERVENTIONS--Women with a positive screening result were recommended to have further investigations. MAIN OUTCOME MEASURES--Findings at surgery and histology of abnormal ovaries. Morphological score > or = 5 and pulsatility index < 1.0 at last scan. RESULTS--Women were aged 17 to 79 (mean 47) years; 959 (60%) were premenopausal, 469 (29%) were naturally postmenopausal, and 173 (11%) had had a hysterectomy. 157 women had a pedigree suggestive of the site specific ovarian cancer syndrome and 288 of multiple site cancers. 61 women had a positive screening result (3.8%, 95% confidence interval 2.9 to 4.9%), six of whom had primary ovarian cancer detected at surgery (five stage Ia, one stage III). Use of a high morphological score or a low pulsatility index increased the odds of finding ovarian cancer from 1:9 to about 2:5 (1:1 in the highest risk groups). Five interval cancers were reported (three ovarian and two peritoneal). Eight of the 11 cancers developed in women with pedigrees suggestive of inherited cancer. CONCLUSIONS--Transvaginal ultrasonography with colour flow imaging can effectively detect early ovarian cancer in women with a family history of the disease. The screening interval should be less than two years.  相似文献   

19.
20.
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号