首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme molecules play important roles in electron transfer by redox proteins such as cytochromes. In addition, a structural role for heme in protein folding and the assembly of enzymes has been suggested. Previous results obtained using Escherichia coli hemA mutants, which are unable to synthesize 5-aminolevulinic acid, a precursor of porphyrins and hemes, have demonstrated a requirement for heme biosynthesis in the assembly of a functional succinate-ubiquinone reductase (SQR or complex II), which is a component of the aerobic respiratory chain. In the present study, in order to investigate the role of the heme in the assembly of E. coli SQR, we used a hemH (encodes ferrochelatase) mutant that lacks the ability to insert iron into the porphyrin ring. The hemH mutant failed to insert functional SQR into the cytoplasmic membrane, and the catalytic portion of SQR [the flavoprotein subunit (Fp) and the iron-sulfur protein subunit (Ip)] was localized in the cytoplasm of the cell. It is of interest to note that protoporphyrin IX accumulated in the mutant cells and inactivated the cytoplasmic succinate dehydrogenase (SDH) activity associated with the catalytic Fp-Ip complex. In contrast, SQR was assembled into the membrane of a heme-permeable hemH double mutant when hemin was present in the culture. Only a low level of SQR activity was found in the membrane when hemin was replaced by non-iron metalloporphyrins: Mn-, Co-, Ni-, Zn- and Cu-protoporphyrin IX, or protoporphyrin IX These results indicate that heme iron is indispensable for the functional assembly of SQR in the cytoplasmic membrane of E. coli, and provide a new insight into the biological role of heme in the molecular assembly of the multi-subunit enzyme complex.  相似文献   

2.
3.
The presence of nitric oxide (NO) greatly accelerates the rate at which hydrogen peroxide (H2O2) kills Escherichia coli. Workers have suggested that this effect may be important in the process of bacteriocide by phagocytes. The goal of this study was to determine the mechanism of this synergism. The filamentation of the dead cells, and their protection by cell-permeable iron chelators, indicated that NO/H2O2 killed cells by damaging their DNA through the Fenton reaction. Indeed, the number of DNA lesions was far greater when NO was present during H2O2 exposure. In the Fenton reaction, free intracellular iron transfers electrons from adventitious donors to H2O2, producing hydroxyl radicals. Although NO damaged the [Fe-S] clusters of dehydratases, this did not increase the amount of free iron and was therefore not the reason for acceleration of Fenton chemistry. However, NO also blocked respiration, an event that previous studies have shown can stimulate oxidative DNA damage. The resultant accumulation of NADH accelerates the reduction of free flavins by flavin reductase, and these reduced flavins drive Fenton chemistry by transferring electrons to free iron. Indeed, mutants lacking the respiratory quinol oxidases were sensitive to H2O2, and NO did not have any further effect. Further, mutants that lack flavin reductase were resistant to NO/H2O2, and overproducing strains were hypersensitive. We discuss the possibility that H2O2 and NO synergize when macrophages attack captive bacteria.  相似文献   

4.
5.
The Fenton or Fenton-type reaction between aqueous ferrous ion and hydrogen peroxide generates a highly oxidizing species, most often formulated as hydroxyl radical or ferryl ([Fe(IV)O](2+)). Intracellular Fenton-type chemistry can be lethal if not controlled. Nature has, therefore, evolved enzymes to scavenge superoxide and hydrogen peroxide, the reduced dioxygen species that initiate intracellular Fenton-type chemistry. Two such enzymes found predominantly in air-sensitive bacteria and archaea, superoxide reductase (SOR) and rubrerythrin (Rbr), functioning as a peroxidase (hydrogen peroxide reductase), contain non-heme iron. The iron coordination spheres in these enzymes contain five or six protein ligands from His and Glu residues, and, in the case of SOR, a Cys residue. SOR contains a mononuclear active site that is designed to protonate and rapidly expel peroxide generated as a product of the enzymatic reaction. The ferrous SOR reacts adventitiously but relatively slowly (several seconds to a few minutes) with exogenous hydrogen peroxide, presumably in a Fenton-type reaction. The diferrous active site of Rbr reacts more rapidly with hydrogen peroxide but can divert Fenton-type reactions towards the two-electron reduction of hydrogen peroxide to water. Proximal aromatic residues may function as radical sinks for Fenton-generated oxidants. Fenton-initiated damage to these iron active sites may become apparent only under extremely oxidizing intracellular conditions.  相似文献   

6.
The metal chelators 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline (neocuproine) showed distinct abilities to prevent hydroxyl radical formation from hydrogen peroxide and Cu+ or F2(2+) (Fenton reaction) as determined by electron spin resonance. o-Phenanthroline prevented both Fe- and Cu-mediated Fenton reactions whereas neocuproine only prevented the Cu-mediated Fenton reaction. Because only 1,10-phenanthroline but not neocuproine prevented DNA strand-break formation in hydrogen peroxide-treated mammalian fibroblasts it appears that the Fe-mediated, as compared to the Cu-mediated, intranuclear Fenton reaction is responsible for DNA damage.  相似文献   

7.
We examined the response to hydrogen peroxide of two L5178Y (LY) sublines which are inversely cross-sensitive to hydrogen peroxide and X-rays: LY-R cells are radio-resistant and hydrogen peroxide-sensitive, whereas LY-S cells are radiosensitive and hydrogen peroxide-resistant. Higher initial DNA breaks and higher iron content (potentially active in the Fenton reaction) were found in the hydrogen peroxide sensitive LY-R cells than in the hydrogen peroxide resistant LY-S cells, whereas the antioxidant defence of LY-R cells was weaker. In particular, catalase activity is twofold higher in LY-S than in LY-R cells. The content of monobromobimane-reactive thiols is 54% higher in LY-S than in LY-R cells. In contrast, the activity of glutathione peroxidase (GPx) is about two times higher in LY-R than in LY-S cells; however, upon induction with selenium the activity increases 15.6-fold in LY-R cells and 50.3-fold in LY-S cells. Altogether, the sensitivity difference is related to the iron content, the amount of the initial DNA damage, as well as to the efficiency of the antioxidant defence system. Differential nuclear translocation of p65-NF-kappaB in LY sublines is due to the more efficient antioxidant defence in LY-S than in LY-R cells.  相似文献   

8.
9.
The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.  相似文献   

10.
Labile iron pool (LIP) constitutes a crossroad of metabolic pathways of iron-containing compounds and is midway between the cellular need for iron, its uptake and storage. In this study we investigated oxidative DNA damage in relation to the labile iron pool in a pair of mouse lymphoma L5178Y (LY) sublines (LY-R and LY-S) differing in sensitivity to hydrogen peroxide. The LY-R cells, which are hydrogen peroxide-sensitive, contain 3 times more labile iron than the hydrogen peroxide-resistant LY-S cells. Using the comet assay, we compared total DNA breakage in the studied cell lines treated with hydrogen peroxide (25 microM for 30 min at 4 degrees C). More DNA damage was found in LY-R cells than in LY-S cells. We also compared the levels of DNA lesions sensitive to specific DNA repair enzymes in both cell lines treated with H(2)O(2). The levels of endonuclease III-sensitive sites and Fapy-DNA glycosylase-sensitive sites were found to be higher in LY-R cells than in LY-S cells. Our data suggest that the sensitivity of LY-R cells to H(2)O(2) is partially caused by the higher yield of oxidative DNA damage, as compared to that in LY-S cells. The critical factor appears to be the availability of transition metal ions that take part in the OH radical-generating Fenton reaction (very likely in the form of LIP).  相似文献   

11.
Fenton反应及其可能的活性产物   总被引:2,自引:0,他引:2  
活性氧对许多生物分子,如脂质、蛋白质和DNA等均可引起损伤,它与许多疾病过程相联系.由超氧阴离子自由基和过氧化氢所引起的许多损伤被认为与它们转变为反应活性更强的组分有关,这些组分包括羟自由基及可能的高价铁组分.实验材料及理论结果表明,当铁盐与过氧化氢混合时,除羟自由基产生以外,高价铁组分也被认为同时产生.Fenton试剂的活性中间体是一亲核加合物,其反应活性及其产物不同于游离态羟自由基的反应活性及产物.Fenton试剂的产物分布依赖于不同的过渡金属离子、不同的配位体、不同的反应底物以及不同的溶剂基体效应.  相似文献   

12.
We report the first characterization and classification of Orf13 (S. refuineus) as a heme-dependent peroxidase catalyzing the ortho-hydroxylation of L-tyrosine to L-DOPA. The putative tyrosine hydroxylase coded by orf13 of the anthramycin biosynthesis gene cluster has been expressed and purified. Heme b has been identified as the required cofactor for catalysis, and maximal L-tyrosine conversion to L-DOPA is observed in the presence of hydrogen peroxide. Preincubation of L-tyrosine with Orf13 prior to the addition of hydrogen peroxide is required for L-DOPA production. However, the enzyme becomes inactivated by hydrogen peroxide during catalysis. Steady-state kinetic analysis of L-tyrosine hydroxylation revealed similar catalytic efficiency for both L-tyrosine and hydrogen peroxide. Spectroscopic data from a reduced-CO(g) UV-vis spectrum of Orf13 and electron paramagnetic resonance of ferric heme Orf13 are consistent with heme peroxidases that have a histidyl-ligated heme iron. Contrary to the classical heme peroxidase oxidation reaction with hydrogen peroxide that produces coupled aromatic products such as o,o'-dityrosine, Orf13 is novel in its ability to catalyze aromatic amino acid hydroxylation with hydrogen peroxide, in the substrate addition order and for its substrate specificity for L-tyrosine. Peroxygenase activity of Orf13 for the ortho-hydroxylation of L-tyrosine to L-DOPA by a molecular oxygen dependent pathway in the presence of dihydroxyfumaric acid is also observed. This reaction behavior is consistent with peroxygenase activity reported with horseradish peroxidase for the hydroxylation of phenol. Overall, the putative function of Orf13 as a tyrosine hydroxylase has been confirmed and establishes the first bacterial class of tyrosine hydroxylases.  相似文献   

13.
The role of the proximal heme iron ligand in activation of hydrogen peroxide and control of spin state and coordination number in heme proteins is not yet well understood. Although there are several examples of amino acid sidechains with oxygen atoms which can act as potential heme iron ligands, the occurrence of protein-derived oxygen donor ligation in natural protein systems is quite rare. The sperm whale myoglobin cavity mutant H93G Mb (D. Barrick, Biochemistry 33 (1994) 6546) has its proximal histidine ligand replaced by glycine, a mutation which leaves an open cavity capable of accommodation of a variety of unnatural potential proximal ligands. This provides a convenient system for studying ligand-protein interactions. Molecular modeling of the proximal cavity in the active site of H93G Mb indicates that the cavity is of sufficient size to accommodate benzoate and phenolate in conformations that allow their oxygen atoms to come within binding distance of the heme iron. In addition, benzoate may occupy the cavity in an orientation which allows one carboxylate oxygen atom to ligate to the heme iron while the other carboxylate oxygen is within hydrogen bonding distance of serine 92. The ferric phenolate and benzoate complexes have been prepared and characterized by UV-visible and MCD spectroscopies. The benzoate adduct shows characteristics of a six-coordinate high-spin complex. To our knowledge, this is the first known example of a six-coordinate high-spin heme complex with an anionic oxygen donor proximal ligand. The benzoate ligand is displaced at alkaline pH and upon reaction with hydrogen peroxide. The phenolate adduct of H93G Mb is a five-coordinate high-spin complex whose UV-visible and MCD spectra are distinct from those of the histidine 93 to tyrosine (H93Y Mb) mutant of sperm whale myoglobin. The phenolate adduct is stable at alkaline pH and exhibits a reduced reactivity with hydrogen peroxide relative to that of both native ferric myoglobin, and the exogenous ligand-free derivative of ferric H93G Mb. These observations indicate that the identity of the proximal oxygen donor ligand has an important influence on both the heme iron coordination number and the reactivity of the complex with hydrogen peroxide.  相似文献   

14.
The utilization by Serratia marcescens of heme bound to hemoglobin requires HasA, an extracellular heme-binding protein. This unique heme acquisition system was studied in an Escherichia coli hemA mutant that was a heme auxotroph. We identified a 92-kDa iron-regulated S. marcescens outer membrane protein, HasR, which alone enabled the E. coli hemA mutant to grow on heme or hemoglobin as a porphyrin source. The concomitant secretion of HasA by the HasR-producing hemA mutant greatly facilitates the acquisition of heme from hemoglobin. This is the first report of a synergy between an outer membrane protein and an extracellular heme-binding protein, HasA, acting as a heme carrier, which we termed a hemophore.  相似文献   

15.
Iron ions mediate the formation of lethal DNA damage by hydrogen peroxide. However, when cells are depleted of iron ions by the treatment with iron chelators, DNA damage can still be detected. Here we show that the formation of such damage in low iron conditions is due to the participation of copper ions. Copper chelators can inhibit cell inactivation, DNA strand breakage and mutagenesis induced by hydrogen peroxide in cells pre-treated with iron chelators. The Fpg and UvrA proteins play an important role in the repair of DNA lesions formed in these conditions, as suggested by the great sensitivity of the uvrA and fpg mutant strains to the treatment when compared to the wild type strain.  相似文献   

16.
Shigella species can use heme as the sole source of iron. In this work, the heme utilization locus of Shigella dysenteriae was cloned and characterized. A cosmid bank of S. dysenteriae serotype 1 DNA was constructed in an Escherichia coli siderophore synthesis mutant incapable of heme transport. A recombinant clone, pSHU12, carrying the heme utilization system of S. dysenteriae was isolated by screening on iron-poor medium supplemented with hemin. Transposon insertional mutagenesis and subcloning identified the region of DNA in pSHU12 responsible for the phenotype of heme utilization. Minicell analysis indicated that a 70-kDa protein encoded by this region was sufficient to allow heme utilization in E. coli. Synthesis of this protein, designated Shu (Shigella heme uptake), was induced by iron limitation. The 70-kDa protein is located in the outer membrane and binds heme, suggesting it is the S. dysenteriae heme receptor. Heme iron uptake was found to be TonB dependent in E. coli. Transformation of an E. coli hemA mutant with the heme utilization subclone, pSHU262, showed that heme could serve as a source of porphyrin as well as iron, indicating that the entire heme molecule is transported into the bacterial cell. DNA sequences homologous to shu were detected in strains of S. dysenteriae serotype 1 and E. coli O157:H7.  相似文献   

17.
Iron and oxidative stress in bacteria   总被引:21,自引:0,他引:21  
The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen.  相似文献   

18.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

19.
Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability.  相似文献   

20.
Treatment of a plasmid shuttle vector (pZ189) with a combination of hydrogen peroxide and a ferric iron/EDTA complex prior to transfection and passage in simian (CV-1) cells increases the frequency of mutations at the supF locus by up to 60-fold over the spontaneous background. This increase in mutation frequency is abolished when the inhibitors desferrioxamine, superoxide dismutase, catalase or dimethyl sulfoxide are included in the initial reaction or when the iron/EDTA complex is omitted, a strong indication that the premutagenic damage arises as a result of direct attack by hydroxyl radical generated in a superoxide driven Fenton reaction. DNA sequence analysis of the mutated plasmids shows that 1) Deletions occuring in combination with base-substitutions arise in 22.5 percent of the induced mutants compared with only 3 percent of spontaneous mutants 2) Sixty percent of all induced deletion mutations involve the loss of a single base and 77 percent of these (20 out of 26) occur at two adenine-containing sites 3) The base-change spectrum of mutants arising in the treated plasmid population is marked by the predominance of mutants containing a single base-change and by an increase in changes at AT base pairs. These results provide direct information concerning the nature of mutations arising in mammalian cells as a result of hydroxyl radical mediated DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号