首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The hypothalamic neurosecretory system of the bullfrog, Rana catesbeiana, was studied with light- and electron microscopy. The median eminence is roughly divided into two portions. The upper portion mostly consists of ependymal cells, glial cells and preoptico-hypophysial nerve tract, whereas in the lower portion, neurosecretory axons, glial cells, processes of glial and ependymal cells, and fine blood vessels of the hypothalamic portal vein are located. A part of the neurosecretory axons of the preoptico-hypophysial tract proceeds to the lower portion of the median eminence. These axons are arranged perpendicularly to the capillaries of the hypothalamic portal vein. The glial cells are densely located in the area of the median eminence where neurosecretory material is abundant. The neurosecretory material in the neurosecretory cells, their axons, the median eminence and the pars nervosa of the bullfrog shows a positive reaction to PAS treatment.The neurohemal area of the median eminence is occupied by many neurosecretory and non-neurosecretory axons, containing neurosecretory granules and/or synaptic vesicles. The axonal portions with the synaptic vesicles which are considered to be the nerve endings abut on the capillaries of the portal system. The size of synaptic vesicles in the axon terminals containing few neurosecretory granules is larger than those in the endings with many neurosecretory granules. Infrequently glial and ependymal processes are interposed between the nerve endings and the capillary wall.In the hilar region of the infundibulum, synapses are frequently observed between the thin fibers with or without neurosecretory granules and dendrites of non-neurosecretory neurons. The probable functions of these synapses are briefly discussed on the basis of our findings. Both in the hilar region of the infundibulum and in the pars nervosa, electron-dense neurosecretory granules of two different sizes were observed. The median eminence contains only one type of granules.The fine structure of the pars nervosa shows similar structures to those of the median eminence. Both in the median eminence and the pars nervosa, the fenestrated endothelium of the capillaries was frequently observed. The thick perivascular connective tissue space containing fibroblasts and collagen fibrils was observed both in the median eminence and the pars nervosa. Vesicles in the cytoplasm of the endothelial cells which appear to take a part in the transendothelial transport were observed.This investigation was supported in part by United States Public Health Service Research Grant, No. A-3678, to Hideshi Kobayashi from the National Institute of Arthritis and Metabolic Diseases and partly by a grant for Fundamental Scientific Research from the Ministry of Education of Japan. The authors wish to express their thanks to Prof. K. Takewaki for his kind encouragement.  相似文献   

2.
Summary The development of the hypophysial portal system has been studied in 35 embryos and 45 nestlings of the White-crowned Sparrow. The primordium of the hypophysis is vascularized by the infundibular (primary) capillary plexus, supplied by the right and left infundibular arteries, which, in the embryo, are constant branches of the right and left internal carotid arteries.The cellular proliferation and differentiation of the pars distalis into rostral and caudal lobes is accompanied by a penetration of portal vessels from the infundibular (primary) capillary plexus into these lobes beginning on the fifth day of incubation. The cellular proliferation of the rostral lobe of the pars distalis and development of the rostral group of the portal vessels precedes that of the caudal lobe of the pars distalis and the development of the caudal group of the portal vessels.The periglandular vessels, which originate in younger embryos from the infundibular (primary) capillary plexus, apparently become a part of the portal vessels.The portal vessels are the sole blood supply to the developing pars distalis of the White-crowned Sparrow; there is no evidence of a direct arterial supply at anytime during embryonic development. The neural-lobe artery appears at the end of incubation as a secondary branch of the right and left infundibular arteries. The rostral and caudal groups of the portal vessels are well-developed at the end of incubation (17–29 mm CRL) when aldehyde-fuchsin positive neurosecretory material first appears in the supraoptic and paraventricular nuclei, in the median eminence and in the neural lobe.The differentiation of the median eminence into rostral and caudal divisions begins at the end of the nestling period although its adult form is not achieved until later. The formation of the portal zone begins at the end of incubation (17–29 mm CRL) and is completed by the time of fledging.Dedicated to Professor Dr. W. Bargmann in honor of his 60th birthday.The investigations reported herein were supported by a research grant (HE 07240 NEUA) from the National Institutes of Health to Professor Vitums, by funds for biological and medical research made available by State of Washington Initiative Measure No 171 to Professor Vitums, by a research grant from the Deutsche Forschungsgemeinschaft to Professor Oksche, by aresearch grant (NB 01353) from the National Institutes of Health to Professor Farner, and by a Research Career Development Award from the National Institute of Arthritis and Metabolic Diseases (5 K 3 AM-18,370) to Professor King. We are grateful to Professor Bargmann for his generosity in making available the facilities of the Anatomisches Institut Kiel for this investigation. We wish to thank Frau Karin Graap and Mrs. Dianne Reno for technical assistance and Miss Janice Austin for the preparation of the drawings.  相似文献   

3.
Summary To assess the roles of the hypothalamic neurosecretory and tubero-infundibular neuron systems in the mechanism of photoperiodic control of testicular growth in Zonotrichia leucophrys gambelii, midline electrolytic lesions were created in the median eminence, in its individual divisions, and in the region of the infundibular nucleus. Radiography was employed to facilitate the stereotaxic placement of lesions. Extensive damage to the neurosecretion-rich anterior division of the median eminence neither prevented the initiation of testicular growth in photosensitive, photostimulated birds nor induced gonadal regression in birds in which gonadal growth had previously been initiated by natural photoperiodic stimulation. Likewise, there was no impairment of the gonadotropin release mechanism when damage was restricted primarily to the neurosecretion-deficient posterior division of the median eminence. However, in birds in which the zone of damage included both divisions of the median eminence, the photoperiodic testicular response was abolished or markedly suppressed; if testicular growth had been initiated prior to electrocoagulation of the median eminence, testicular regression was induced. Gonadotropic insufficiency comparable to that induced by lesions in the median eminence was caused also by large lesions in the region of the infundibular nucleus or by smaller ones restricted primarily to its median, basal portion. Zones of damage that impair gonadotropic function thus correspond to (a) the chief nucleus of origin of the tubero-infundibular tract, (b) the principal route of entry of tubero-infundibular fibers into the anterior and posterior divisions of the median eminence, and (c) the terminal distribution of tubero-infundibular fibers in the eminential zones of neurovascular contact. These observations suggest that the tubero-infundibular neuron system is an essential component of the photoperiodic control mechanism of Z. leucophrys gambelii and are consistent with an hypothesis that assigns to this parvicellular neuron system the production of a neurohormone that regulates the release of a growth-stimulating gonadotropin from the pars distalis. The failure of anterior median eminence lesions to eliminate gonadotropin release is inconsistent with the hypothesis that the eminential component of the hypothalamic neurosecretory system is an essential element of the mechanism that controls photoperiodic testicular growth.This investigation was supported by a research grant (NB 01353) to Professor Donald S. Farner from the National Institutes of Health. A portion of the research was conducted while the author held the William T. Porter Fellowship of The American Physiological Society. I am grateful to Professor Farner for his suggestions and criticisms.This paper is based on a thesis submitted in partial fulfillment of the requirements for the Ph. D. in Zoophysiology at Washington State University. Portions of this study have been published previously in abstract form (F. E. Wilson and Farner, 1965).  相似文献   

4.
Summary The distribution of monoamine-oxidase and acetylcholinesterase activities in the hypothalamus of the White-crowned Sparrow has been studied in relation to the hypothalamohypophysial neurosecretory system. The enzyme activities, as revealed by the methods employed, are unaffected during photoperiodically induced testicular growth. Monoamine oxidase has a distribution distinctly different from that of the aldehyde-fuchsin positive neurosecretory material in that there is high activity in the peripheral palisade layers of both the anterior and posterior divisions of the median eminence. Intimate contact is made between these areas with the primary vessels of the hypophysial portal system. A second concentration of activity lies in a layer between the ependymal cells and the neurosecretory material of the fiber tract. In general, monoamine oxidase appears to be associated with glial elements and non-neurosecretory axons. The pars nervosa has little or no monoamine-oxidase activity. The distribution of acetylcholinesterase activity in the anterior division of the median eminence is very similar to that of the aldehyde-fuchsin positive neurosecretory neurons; however, acetylcholinesterase also occurs in the posterior division without associated neurosecretory fibers. These distribution of enzyme activities are considered in relation to possible adrenergic and cholinergic mechanisms in the median eminence.Dedicated to Professor Berta Scharrer in honor of her 60th birthday.Supported by grant NB-01353 from the National Institutes of Health to Professor Farner. This investigation was conducted while Doctor Kobayashi was a National Science Foundation Senior Foreign Scientist at Washington State University. We are indebted to Doctor Christian Da Lage, Laboratoire de Histologie, Falculté de Médecine de Paris, for the preliminary development of some of the techniques used in these investigations.  相似文献   

5.
Summary Dawson (1952) showed that, in Rana, many nerve terminals end round the capillaries of the venous portal system of the median eminence. Our observations not only confirm these facts but show as well that, besides the posterior lobe, the outer zone of the median eminence is also a centre of accumulation of neurosecretory material derived from the pre-optic nucleus. The amount of this neurosecretory material is moreover subject to a certain variation in connection with the seasons and with experimental conditions. The idea is put forward that the outer zone of the median eminence of Rana has to be considered as an analogical organ of the posterior lobe. Indeed, in the median eminence, the same morphological facts can be found, which are advanced for the conception that the posterior lobe is a centre of accumulation and a place of release of neurosecretory material originating from the pre-optic nucleus. On the basis of our observations we presume that the hypothalamo-hypophyseal neurosecretory system of Rana can be divided in two sub-units. System I ends in the posterior lobe; system II in the outer zone of the median eminence. The data of the literature indicate that the two systems also probably exist in the higher vertebrates. From these facts it is obvious that the neurosecretory material is transported from the pre-optic nucleus, via the tract, towards the outer zone of the median eminence.  相似文献   

6.
The distribution of melanin-concentrating hormone (MCH) in the central nervous system of the frog Rana ridibunda was determined by the indirect immunofluorescence technique using antibodies against synthetic salmon MCH, generated in rabbits. The most prominent group of MCH-like containing perikarya was detected in the preoptic nucleus. Comparatively, a moderate number of cell bodies was observed in the dorsal infundibular nucleus and in the ventral thalamic area. Brightly immunofluorescent nerve bundles were found in the preoptic nucleus and in the ventral infundibular nucleus, coursing towards the internal zone of the median eminence and the pituitary stalk. An intense network of immunofluorescent fibers was localized in the neural lobe of the pituitary. The subcellular localization of MCH-like material was studied in the neurohypophysis using the immunogold technique. It was demonstrated that MCH-like material was contained in dense core vesicles (80–90 mm in diameter) within specific nerve terminals. The present findings indicate that, in amphibians, MCH-like peptide is located in specific hypothalamic neurons. Our data suggest that MCH may be released by neurohypophyseal nerve endings as a typical neurohormone.  相似文献   

7.
Summary The ultrastructure of the normal median eminence of the male rhesus monkey (Macaca mulatta) is described using high-voltage electron microscopy. Surface specializations of ependymal cells lining the infundibular recess included cilia, apical extrusions, and microvilli. Supraependymal cells were predominantly macrophage-like, but examples of lymphocytic types were also seen. Tanycytes had long, branching, basal processes filled with numerous microtubules, some lipid droplets, and granules. The zona interna was composed of large unmyelinated neurosecretory fibers. A few myelinated fibers were also seen, but their character as neurosecretory fibers could not be established. The zona externa was composed of densely-packed profiles of neurosecretory fibers of small diameter, was well-vascularized and contained the terminations of tanycytes. Perivascular glial cells, vesiculated elements, pituicytes, and cellular elements common to connective tissue were observed. The intricate relationships between both the cellular and fibrous elements of the median eminence can be appreciated with the capability of high-voltage electron microscopy to discern ultrastructure in sections 10 times thicker than those used for low-voltage electron microscopy. The median eminence of this primate species has an ultrastructural organization similar to that described for most other species.Supported by USPHS Program Project Grant NS-11642 and USPHS HD-08867. The authors appreciate the excellent technical advice and assistance of Mr. George Wray in operation of the HVEMCareer Development Awardee K04-GM-70001  相似文献   

8.
Summary The occurrence and localization of immunoreactive corticotropin-releasing factor (CRF) in the brain and pituitary of the elasmobranch fish Scyliorhinus canicula, were studied by means of specific radioimmunoassay and immunohistochemistry using the indirect immunofluorescence method. Brain and pituitary extracts showed a good cross-reactivity with the ovine CRF antiserum, but serial dilutions of tissue samples did not completely parallel the standard curve. Relatively high concentrations of CRF-like material were found within the pituitary, diencephalon, and telencephalon. CRF-like immunoreactive perikarya were observed in the preoptic nucleus and in the nucleus lateralis tuberis. Numerous immunoreactive cells appeared to be of the CSF-contacting type. CRF-like immunopositive fibers were seen to run through the hypothalamus within the ventro-medial floor of the infundibular region. A dense plexus of immunoreactive nerve endings terminated in the median eminence and the neurointermediate lobe of the pituitary. These results indicate that a neurosecretory system containing CRF-like immunoreactivity exists in the brain of elasmobranchs, a group of vertebrates which has diverged early from the evolutionary line leading to mammals. In addition, our data support the notion that a CRF-like molecule is involved in the regulation of corticotropic and melanotropic cell activity in this primitive species of fish.  相似文献   

9.
The localization of atrial natriuretic factor (ANF)-like immunoreactivity in the central nervous system of the frog Rana ridibunda was examined by the indirect immunofluorescence technique, using an antiserum against synthetic ANF (Arg101-Tyr126). Immunoreactive cell bodies were principally found in the dorsal and medial pallium, the medial septal nucleus, the ventrolateral and anteroventral areas of the thalamus, the lateral forebrain bundle, the posterolateral thalamic nuclei, the preoptic nucleus, the dorsal infundibular nucleus, and the anteroventral tegmentum nucleus of the mesencephalon. Numerous cell bodies and a very dense fiber bundle were visualized in the interpeduncular nucleus. All the areas mentioned above contained a high density of immunoreactive fibers. In addition, the amygdala, the infundibular nucleus, the median eminence, and most of the areas of the mesencephalon contained a moderate number of ANF-positive nerve processes. In the frog pituitary, fibers and nerve terminals were found in the peripheral zone of the neural lobe. The intermediate and anterior lobes of the frog pituitary were totally devoid of ANF immunoreactivity. These results indicate that ANF-like material is widely distributed in the frog brain and that ANF may be involved in various brain functions including neuroendocrine regulations.  相似文献   

10.
The presence and possible sources of more than 30 neuropeptides in the median eminence are summarized. The median eminence is the brain area which contains neuropeptides in the highest number and in the highest concentrations in the central nervous system. This area constitutes the final common pathway for signals from the brain to the pituitary. Many peptidergic fibers enter the median eminence and terminate around the pericapillary space and release their neuropeptides into hypophysial portal blood vessels. Other peptidergic fibers traverse the median eminence and terminate in the posterior pituitary. According to their origin, fibers in the median eminence can be classified as intra- or extrahypothalamic fibers. The neuropeptide-containing fibers in the median eminence are mainly intrahypothalamic, they reach the median eminence through either the lateral retrochiasmatic area or the tuberoinfundibular tract. Depending on the site of their action, neuropeptides may be either neurohormones acting on the anterior pituitary cells or neurotransmitters affecting the release of substances from other nerve terminals within the median eminence.  相似文献   

11.
Summary The ultrastructure of the infundibulum has been studied and compared with that of neural lobe in normal rats. The neurohemal areas of the median eminence are similar to those of the stem but differ from those of neural lobe. The infundibular axons which end around the primary capillaries of the portal system are of a significantly finer caliber. Secondly they contain a different vesicle population. They lack the large (1500 Å–2100 Å) neurosecretory vesicles so abundant in neural lobe axon terminals but contain a smaller (less than 1000 Å) type of vesicle with an osmiophilic center. These dense-core vesicles are consistently present in the many infundibular levels examined, although they are not as numerous as the neurosecretory ones of neural lobe. They are outnumbered by vesicles of the synaptic type, whereas in neural lobe the neurosecretory ones predominate. Another difference involves the electron lucent, neurosecretory vesicle. These are abundant in neural lobe axons, but comparable aggregations of them have not been seen in infundibular axon endings of the neurohemal areas. In contrast, the internal zone of median eminence and the interior of the stem display, in addition to the fine axons, many large fibers which by size and content match the ones of neural lobe. However, careful study indicates that these are axis cylinders and not axon endings.These observations lead to the conclusion that the small calibered axons which terminate around the infundibular capillaries of the portal system constitute a separate group, and are clearly distinguishable at the ultrastructural level from the large supraoptico-neurohypophyseal axons. The latter normally traverse the infundibulum but terminate in neural lobe.This investigation was supported by U.S.P.H.S. Research Grant 5 RO 1 NB 02321-05, National Institute of Neurological Diseases and Blindness. — The author is particularly indebted to Mrs. Nora Tong for her excellent technical assistance throughout the course of this study.  相似文献   

12.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

13.
Vascular casts of the pituitary-median eminence complex of mice,rats, dogs, sheep and monkeys were examined with the scanning electron microscope. Microfil-injected specimens of the rabbit and monkey pituitary-median eminence complex were examined by light microscopy after intracranial internal carotid artery occlusion. In each species a common neuropophyseal capillary network was found uniting infundibulum (median eminence), infundibular stem and infundibular process. This capillary bed is supplied from above by superior hypophyseal arteries and from below by inferior hypophyseal arteries. An artery to the infundibular stem was found in some species. With occlusion of the intracranial internal carotid arteries, flow through superior hypophyseal arteries did not occur. Yet the entire neurohypophyseal capillary bed filled upon injection with Microfil. These observations suggest the concept of a restricted arterial supply to the median eminence with drainage to the underlying adenohypophsis on one hand and to the infundibular process with drainage to the systemic circulation on the other must be modifed and that blood flow within the neurohypophyseal capillary bed (between infundibular process and median eminence) occurs.  相似文献   

14.
Summary The distribution of cholinesterases in hypothalamo-hypophysial neurosecretory system of the White-crowned Sparrow has been examined histochemically. The perikarya of the neurosecretory cells of the paraventricular and supraoptic nuclei have a high acetylcholinesterase activity. Acetylcholinesterase activity also occurs in the cells of the infundibular nucleus. The proximal parts of the axons of the cells of the neurosecretory and infundibular nuclei have strong acetylcholinesterase activity and weak non-specific cholinesterase activity. In the median eminence, the activity of acetylcholinesterase is strongest in the palisade layer. In the pars nervosa, there is definite, although weak, acetylcholinesterase activity.This investigation was supported by grants from the National Institutes of Health to Professor Farner (B-1353) and to Dr. Kobayashi (A-3678).  相似文献   

15.
Twenty-eight to 133 days after hypophysectomy of the rat, somatostatin as revealed immunocytochemically was depleted from all segments of the median eminence and from the proximal part of the infundibular stem. A consistent change in the store of somatostatin in the OVLT could not be demonstrated.  相似文献   

16.
Neurophysin, vasopressin and oxytocin were localized in different portions of the supraopticohypophysial tract (SHT) using the unlabeled antibody enzyme technique at the ultrastructural level. In vasopressin-positive supraoptic perikarya, vasopressin and neurophysin were present in all neurosecretory granules. Within the zona interna of the median eminence, vasopressin and neurophysin were present in two populations of axons, one with granules of 1300-1500 A and one with granules of 900-1300 A. Following exposure of thin sections of median eminence to antiserum to neurophysin, reaction products were present in granules and in the extragranular cytoplasm in the axons with larger granules; in all other cases reaction product was confined to the granules. Vasopressin-positive fibers were also presented in large numbers of the zona externa of the median eminence and many terminated on the pituitary primary portal plexus. A few oxytocin fibers were present on the portal capillaries in the infundibular stalk. In the posterior pituitary all axon profiles were neurophysin positive. Neurophysin was present as both a granular and cytoplasmic pool. Vasopressin-containing axons account for 90% of the neuronal elements in the posterior pituitary and oxytocin for the remaining 10%. Findings on the subcellular distribution of these peptides are related to current theories on transport and release of neurohormones.  相似文献   

17.
Summary We examined the immunocytochemical distribution of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, in the di-and mesencephalon of developing bullfrog tadpoles. Special attention was given to catecholaminergic innervation of the median eminence and pituitary. In premetamorphic tadpoles, tyrosine hydroxylase-immunoreactive neurons were visualized in the suprachiasmatic and infundibular hypothalamus, the ventral thalamus, and midbrain tegmentum by Taylor-Kollros stage V. The number of labeled neurons in all these areas increased as metamorphosis progressed. By mid-prometamorphosis, labeled neurons appeared in the preoptic recess organ as well as in the posterior thalamic nucleus. The majority of cells in the preoptic recess organ, as well as occasional neurons in the suprachiasmatic nucleus, exhibited labeled processes which projected through the ependymal lining of the preoptic recess to contact cerebrospinal fluid. The modified CSF-contacting neurons of the nucleus of the periventricular organ were devoid of specific staining. By late prometamorphosis, labeled fibers from the suprachiasmatic nucleus were observed projecting caudally to enter the hypothalamo-hypophysial-tract en route to innervating the median eminence and pituitary. Labeled fibers arising from the dorsal infundibular nucleus projected ventrolaterally to contribute to catecholaminergic innervation of the median eminence and pituitary. Immunoperoxidase staining of tyrosine hydroxylase-immunoreactive fibers and terminal arborizations in the median eminence were restricted to non-ependymal layers, while labeled fibers in the pituitary were observed in the pars intermedia and pars nervosa. Staining of tyrosine hydroxylase-immunoreactive fibers in the median eminence and pituitary was sparse or absent in premetamorphic tadpoles, but became increasingly more intense as metamorphosis progressed.  相似文献   

18.
Summary The distribution of luteinizing hormone-releasing hormone (LHRH) was studied by light-microscopic immunocytochemistry in the hypothalamo-pituitary complex of humans, monkeys, ferrets, bats, and rats. LHRH-immunoreactive fibers were identified in the median eminence of all these species, but the precise location of these fibers varied. In rats, the vast majority of LHRH fibers in the median eminence was confined to the external zone. In contrast, in bats, most of the LHRH fibers were located in the internal zone. While these two species represent opposite extremes in distribution of LHRH fibers within the median eminence, intermediate conditions were found in humans, monkeys, and ferrets, as considerable numbers of fibers occurred in both internal and external zones. In addition to fibers in the median eminence, large numbers of LHRH-immunoreactive fibers were identified traversing the infundibular stalk and entering the neural lobe of the pituitary in all species examined except the rat. In rats, only occasional fibers were observed in the infundibular stalk, and they did not project into the neural lobe. However, in humans, monkeys, ferrets, and bats, groups of LHRH-immunoreactive fibers extended well into the substance of the posterior pituitary. Most of these fibers appeared to terminate near the adenohypophysis, but others coursed away from the anterior lobe and penetrated deeper portions of the neural lobe. These observations, made in several mammalian species, indicate that multiple routes may exist in the median eminence/stalk/pituitary complex for the delivery of LHRH to the anterior pituitary.  相似文献   

19.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

20.
Hypophysectomy and pituitary stalk section result in dramatic morpho-functional changes in all parts of mammalian hypothalamo-hypophyseal neurosecretory system. Reorganization of the hypophyseal stalk consists of several interconnected but differing in time processes. Simultaneously with the developing traumatic changes (degeneration of the sectioned neurosecretory fibers, secretory disorders) proliferation of pituicytes with characteristic phagocytic activity is observed. A little bit later, intensive mitotic division of endothelial cells and capillary formation piercing the stalk periphery begins. At the same time, a new way for blood outflow from the capillaries of the primary portal plexus into the synuses of the brain pias is restored. Degenerated neurosecretory fibers are gradually substituted by regenerating fibers forming a dense network in heavily vascularizated stalk parts. As differentiation of endothelial cells and regeneration of neurosecretory fibers procede, axovasal contacts are gradually forming. At that time the hypophyseal stalk begins functioning as a neurohumoral organ but morpho-functionally less perfect than the posterior hypophyseal lobule. In the median eminence of the operated animals, unlike the intact ones, neurosecrete is accumulating around the capillaries of the portal plexus. Mechanical damage of neurosecretory fibers during the operation results in degeneration of a greater number of neurosecretory cells in the supraoptical and paraventricular nuclei. Preserved cells have an increased functional activity because of neurohormonal deficiency in the organism. As a result of the structural changes mentioned, diabetes mellitus develops, subsiding gradually with time course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号