首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
6-Deoxy-D-glucose, a structural homomorph of D-glucose which lacks a hydroxyl group at carbon 6 and thus cannot be phosphorylated, is transported by Saccharomyces cerevisiae via a facilitated diffusion system with affinity equivalent to that shown with D-glucose. This finding supports the facilitated diffusion mechanism for glucose transport and contradicts theories of transport-associated phosphorylation which hold that sugar phosphorylation is necessary for high-affinity operation of the glucose carrier.  相似文献   

3.
An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport.  相似文献   

4.
Hxt2 and Hxt1 are high affinity and low affinity facilitative glucose transporter paralogs of Saccharomyces cerevisiae, respectively, that differ at 75 amino acid positions in their 12 transmembrane segments (TMs). Comprehensive analysis of chimeras of these two proteins has previously revealed that TMs 1, 5, 7, and 8 of Hxt2 are required for high affinity glucose transport activity and that leucine 201 in TM5 is the most important in this regard of the 20 amino acid residues in these regions that differ between Hxt2 and Hxt1. To evaluate the importance of the remaining residues, we systematically shuffled the amino acids at these positions and screened the resulting proteins for high affinity and high capacity glucose transport activity. In addition to leucine 201 (TM5), four residues of Hxt2 (leucine 59 and leucine 61 in TM1, asparagine 331 in TM7, and phenylalanine 366 in TM8) were found to be important for such activity. Furthermore, phenylalanine 198 (TM5), alanine 363 (TM8), and either valine 316 (TM7) or alanine 368 (TM8) were found to be supportive of maximal activity. Construction of a homology model suggested that asparagine 331 interacts directly with the substrate and that the other identified residues may contribute to maintenance of protein conformation.  相似文献   

5.
Expression level of genes associated with oxygen [cytochrome oxidase 1 (COX1) and myoglobin (Mb)] and glucose utilization [glucose transporters (GLUTs) and hexokinases (HKs)] along with metabolic indices were determined in Atlantic cod (Gadus morhua) subjected to an hypoxic challenge of < 45% oxygen saturation for 24 days. There were two closely related HKs considered to be homologues of mammalian HKIs. HKIa and HKIb share 86% sequence identity and are both ubiquitously expressed. Mb was also expressed in many tissues with highest levels occurring in heart. Over the first 15 days of hypoxia there were transient increases in plasma lactate in hypoxic relative to normoxic fish associated with a significant decrease in liver glycogen. Over days 1–6, there were in ten of eleven cases, increased average (with a number of conditions being statistically significant) expression levels of GLUTs (1, 2, 4) and HKs (1a and b) in gill, heart, liver, and white muscle in hypoxic relative to normoxic fish. There were significant increases in COX1 and Mb expression levels in gill by day 24 but no changes in these aerobic indicators in heart or liver. Overall the data suggest a transient increase in genes associated with glucose utilization during the early part of the hypoxic challenge followed by alterations in gene expression in gill.  相似文献   

6.
7.
The glucose phosphotransferase system (PTS) of Streptococcus bovis could not account for the glucose consumption of exponential cultures, and the kinetics of glucose transport were biphasic. A PTS-deficient mutant lost the high-affinity, low-capacity system but retained its ability to take up glucose at high substrate concentrations. The low-affinity, high-capacity system did not require a proton motive force or ATP and could not be driven by an artificial membrane potential in the presence or absence of sodium. Since low-affinity transport was directly proportional to the external substrate concentration and exhibited counterflow kinetics, it appeared that a facilitated-diffusion mechanism was responsible for glucose transport at high substrate concentrations.  相似文献   

8.
Glucose uptake is autoregulated in a variety of cell types and it is thought that glucose transport is the major step that is subjected to control by sugar availability. Here, we examined the effect of high glucose concentrations on the rate of glucose uptake by human ECV-304 umbilical vein-derived endothelial cells. A rise in the glucose concentration in the medium led a dose-dependent decrease in the rate of 2-deoxyglucose uptake. The effect of high glucose was independent of protein synthesis and the time-course analysis indicated that it was relatively slow. The effect was not due to inhibition of glucose transport since neither the expression nor the subcellular distribution of the major glucose transporter GLUT1, nor the rate of 3-O-methylglucose uptake was affected. The total in vitro assayed hexokinase activity and the expression of hexokinase-I were similar in cells treated or not with high concentrations of glucose. In contrast, exposure of cells to a high glucose concentration caused a marked decrease in phosphorylated 2-deoxyglucose/free 2-deoxyglucose ratio. This suggests the existence of alterations in the rate of in vivo glucose phosphorylation in response to high glucose. In summary, we conclude that ECV304 human endothelial cells reduce glucose utilization in response to enhanced levels of glucose in the medium by inhibiting the rate of glucose phosphorylation, rather than by blocking glucose transport. This suggests a novel metabolic effect of high glucose on cellular glucose utilization.  相似文献   

9.
10.
1. An active monomeric form of inorganic pyrophosphatase from baker's yeast was prepared by maleylation of the protein at pH 10.5. 2. The dimeric and monomeric pyrophosphatase bound at non-catalytic sites 0.5 and 1.0 mol of slowly dissociating Pi per mol subunit, respectively. This stoichiometry was not affected on active site blockage with PPi. 3. Added Pi accelerated the dissociation of Pi from the dimeric but not monomeric enzyme. 4. Our results indicate a strong interaction to occur between the non-catalytic sites of two subunits of native pyrophosphatase which results in diminished stability of Pi binding to one of them.  相似文献   

11.
The glucose phosphotransferase system (PTS) of Streptococcus bovis could not account for the glucose consumption of exponential cultures, and the kinetics of glucose transport were biphasic. A PTS-deficient mutant lost the high-affinity, low-capacity system but retained its ability to take up glucose at high substrate concentrations. The low-affinity, high-capacity system did not require a proton motive force or ATP and could not be driven by an artificial membrane potential in the presence or absence of sodium. Since low-affinity transport was directly proportional to the external substrate concentration and exhibited counterflow kinetics, it appeared that a facilitated-diffusion mechanism was responsible for glucose transport at high substrate concentrations.  相似文献   

12.
13.
14.
Previous examination of the accessibility of a panel of single-Cys mutants in transmembrane domain III (TMDIII) of the yeast mitochondrial citrate transport protein to hydrophilic, cysteine-specific methanethiosulfonate reagents, enabled identification of the water-accessible surface of this domain and suggested its potential participation in the formation of a portion of the substrate translocation pathway. To evaluate this idea, we conducted a detailed characterization of the functional properties of 20 TMDIII single-Cys substitution mutants. Kinetic studies indicate that the A118C, S123C, and K134C mutants displayed a 3- to 7-fold increase in K(m). Moreover, the A118C mutation caused a doubling of the V(max) value, whereas the S123C, E131C, and K134C mutations caused V(max) to dramatically decrease, resulting in a reduction of the catalytic efficiencies of these three mutants by >97%. Examination of the ability of citrate to protect against the inhibition mediated by sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) indicated that citrate conferred significant protection of cysteines substituted at eight water-accessible locations (i.e. Gly-115, Leu-116, Gly-117, Leu-121, Ser-123, Val-127, Glu-131, and Thr-135), but not at other sites. Importantly, similar levels of protection were observed at both 4 degrees C and 20 degrees C. The temperature independence of the protection indicates that substrate binding and/or occupancy of the transport pathway sterically blocks the access of MTSES to these sites, thereby providing direct protection, without involvement of a major protein conformational change. The significance of these extensive functional investigations is discussed in terms of the three-dimensional CTP homology model that we previously developed and a new model of the dimer interface.  相似文献   

15.
Summary The nutritive tubes of telotrophic insect ovaries are cytoplasmic channels along which ribosomes are transported over distances of several mm from trophic cells to the developing oocytes. The presence within the nutritive tubes of a massive number of orientated microtubules renders them strongly birefringent in polarised light, a property which, together with their size, rendered them amenable to isolation by microdissection. Ultrastructurally the isolated tubes were indistinguishable from undissected controls. Polyacrylamide gels revealed a consistent pattern of some 30 bands of which tubulin was the most prominent. The tubes also contained a band which comigrated with the major high molecular weight micro tubule associated protein (MAP) from mouse brain but no detectable actin, myosin or dynein. Microtubules in the isolated tubes were not depolymerised by treatments (cold, calcium and colchicine) which typically disrupt cytoplasmic microtubules. Following extraction of the membrane enclosing the tubes and the cytoplasmic matrix the microtubule cytoskeleton persisted, retaining its cylindrical organisation although no bridges between the microtubules were detected in the electron microscope. The possibility that the stability and spatial deployment of the nutritive tube microtubules is conferred by specific microtubule accessory proteins is discussed.  相似文献   

16.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

17.
18.
Metabolic control analysis of tumor glycolysis has indicated that hexokinase (HK) and glucose transporter (GLUT) exert the main flux control (71%). To understand why they are the main controlling steps, the GLUT and HK kinetics and the contents of GLUT1, GLUT2, GLUT3, GLUT4, HKI, and HKII were analyzed in rat hepatocarcinoma AS‐30D and HeLa human cervix cancer. An improved protocol to determine the kinetic parameters of GLUT was developed with D ‐[2‐3H‐glucose] as physiological substrate. Kinetic analysis revealed two components at low‐ and high‐glucose concentrations in both tumor cells. At low glucose and 37°C, the Vmax was 55 ± 20 and 17.2 ± 6 nmol (min × mg protein)?1, whereas the Km was 0.52 ± 0.7 and 9.3 ± 3 mM for hepatoma and HeLa cells, respectively. GLUT activity was partially inhibited by cytochalasin B (IC50 = 0.44 ± 0.1; Ki = 0.3 ± 0.1 µM) and phloretin (IC50 = 8.7 µM) in AS‐30D hepatocarcinoma. At physiological glucose, GLUT1 and GLUT3 were the predominant active isoforms in HeLa cells and AS‐30D cells, respectively. HK activity in HeLa cells was much lower (60 mU/mg protein) than that in AS‐30D cells (700 mU/mg protein), but both HKs were strongly inhibited by G6P. HKII was the predominant isoform in AS‐30D carcinoma and HeLa cells. The much lower GLUT Vmax and catalytic efficiency (Vmax/Km) values in comparison to those of G6P‐sensitive HK suggested the transporter exerts higher control on the glycolytic flux than HK in cancer cells. Thus, GLUT seems a more adequate therapeutic target. J. Cell. Physiol. 221: 552–559, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
Sulfate transport in isolated placental brush-border membrane vesicles has properties consistent with an anion exchange process. To ascertain the relevance of this finding to sulfate accumulation by the fetus and placenta in vivo, we examined sulfate transport in human placental tissue slices, comparing sulfate uptake with that of a non-metabolizable amino acid marker, alpha-aminoisobutyrate (AIB). In contrast to AIB, which was actively concentrated from physiological media, sulfate uptake by the placenta slice was concentrative only in the absence of sodium and at low pH. Uptake of sulfate reached a steady state after 60 min. It was blocked by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate), a specific inhibitor of anion transport, but not by ouabain. We found no evidence for Na(+)-dependent uptake of sulfate in incubated placental tissue. It seems unlikely that Na(+)-dependent sulfate transport by the placenta can be responsible for net sulfate accumulation by the human fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号