首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
玉米和水稻重要性状QTL的比较研究   总被引:14,自引:0,他引:14  
严建兵  汤华  黄益勤  郑用琏  李建生 《遗传学报》2004,31(12):1401-1407
在构建玉米分子标记连锁图和对重要性状进行QTL定位的基础上,以玉米和水稻的分子标记比较图谱为桥梁,分析了控制玉米和水稻F2:3群体重要农艺和产量性状QTL的共线性关系。研究结果表明:在玉米和水稻共线性的染色体区段,控制玉米株高、行数和行粒数的QTL与控制水稻株高、单株有效穗和每穗实粒数的QTL存在广泛的对应关系;在已定位的影响玉米株高等5个性状的45个QTL中,有16个与水稻“汕优63”群体中5个相同或相似性状所定位的38个QTL中的12个具有共线性关系。这一结果为利用水稻的基因组数据来定位、分离和克隆玉米重要性状的QTL提供了有益信息。同时发现,控制水稻某一个性状的QTL常常与控制玉米同一性状的两个QTL相对应,这一结果为玉米染色体是由水稻染色体加倍而来的理论假设提供了支持。研究还发现,不管是玉米还是水稻在染色体上都存在QTL的富集区域,而这些富集区域常常存在于相同的共线性区域,暗示着玉米和水稻控制相同或相似性状的QTL可能有着相同的起源。基于性状的比较基因组研究不但有助于新基因或QTL的发现、克隆和利用,同时还有助于研究不同物种间染色体的演变和进化规律。  相似文献   

2.
Maize flowering is an important agronomic character, which is controlled by quantitative trait loci (QTL). Over the years, a large number of flowering-related QTL have been found in maize and exist in public databases. However, combining these data, re-analyzing and mining candidate loci and fine mapping of flowering-related traits to reduce confidence intervals has become a hot issue in maize. In this study, the QTL of 6 important agronomic traits of maize flowering were collected from 15 published articles, including flowering period (DA), Days to tasseling (DTT), Days to silking (DS), Days to pollen shedding (DTP), anthesis-silking interval (ASI) and the photosensitive (PS). Through meta-analysis, 622 QTL were integrated into 26 meta-QTLs (MQTL). Finally, the candidate genes related to maize flowering (Gene IDs: ZM00001D005791, ZM00001D019045, ZM00001D050697, ZM00001D011139) were identified by Gene Ontology (GO) enrichment and hierarchical cluster analysis of expression profile. Based on the results of this study, the genetic characteristics of maize flowering traits will be further analyzed, which is of great significance to guide the improvement of important agronomic characters and improve the efficiency of breeding.  相似文献   

3.

Maize ear fasciation

Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces.

Material and Methods

Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed.

Results and Discussion

Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection.

Conclusions

Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.  相似文献   

4.
The loci explaining the variability of quantitative traits related to starch content and composition (amylose, amylopectin and water soluble fraction) were searched for in maize kernels. Multifactorial genetic methods were used to detect and locate QTLs (quantitative trait loci) on a genetic map consisting mainly of RFLP markers for genes with known function. The genetic material was recombinant inbred lines originating from parents differing in starch structure (dent vs. flint). Kernels were harvested from field grown plants for two successive years and under two pollination systems. Main effect and epistasis QTLs were detected using two methods, composite interval mapping (MQTL) and ANOVA. Despite large year-to-year differences, physiologically meaningful co-locations were observed between trait QTLs. Moreover, the number of expressed sequences on our map allowed the search for co-locations between QTLs and genes involved in carbohydrate metabolism. The main co-location was between an amylose QTL and Shrunken 2 (SH2) locus, on chromosome 3 (SH2 encoding for the large subunit of ADPglucose pyrophosphorylase). The importance of this locus as a candidate gene for a starch QTL is in agreement with previous studies based either on QTL co-locations or on revertant analysis. Other co-locations were observed between amylose and amylopectin QTLs and the two loci of IVR1 invertase genes on chromosomes 2 and 10. Further comparison with previously detected QTLs for carbohydrate metabolism in maize leaves showed consistent co-location in map regions devoid of candidate genes, such as near chromosome 1S telomere. The possible contribution of regulatory genes in this region is discussed.  相似文献   

5.
基于元分析的抗玉米丝黑穗病QTL比较定位   总被引:2,自引:0,他引:2  
以玉米遗传连锁图谱IBM2 2005 Neighbors为参考图谱,通过映射整合不同试验中的抗玉米丝黑穗病QTL,构建QTL综合图谱。在国内外种质中,共发现22个抗病QTL,分布在除第7染色体外的9条玉米染色体上。采用元分析技术,获得2个“一致性”抗病QTL,图距分别为8.79 cM和18.92cM。从MaizeGDB网站下载“一致性”QTL区间内基因和标记的原始序列;采用NCBI网站在线软件BLASTx通过同源比对在2个“一致性”QTL区间内初步获得4个抗病位置候选基因。借助比较基因电子定位策略,将69个水稻和玉米抗性基因定位于玉米IBM2图谱上,在2个“一致性”QTL区间内分别发现1个水稻抗性基因,初步推断为抗病位置候选基因。本文结果为抗玉米丝黑穗病QTL精细定位和分子育种提供了基础。  相似文献   

6.
BLASTX alignment between 189.5 Mb of rice genomic sequence and translated Arabidopsis thaliana annotated coding sequences (CDS) identified 60 syntenic regions involving 4–22 rice orthologs covering ≤3.2 cM (centiMorgan). Most regions are <3 cM in length. A detailed and updated version of a table representing these regions is available on our web site. Thirty-five rice loci match two distinct A.thaliana loci, as expected from the duplicated nature of the A.thaliana genome. One A.thaliana locus matches two distinct rice regions, suggesting that rice chromosomal sequence duplications exist. A high level of rearrangement characterizing the 60 syntenic regions illustrates the ancient nature of the speciation between A.thaliana and rice. The apparent reduced level of microcollinearity implies the dispersion to new genomic locations, via transposon activity, of single or small clusters of genes in the rice genome, which represents a significant additional effector of plant genome evolution.  相似文献   

7.
Not all genes are created equal. Despite being supported by sequence conservation and expression data, knockout homozygotes of many genes show no visible effects, at least under laboratory conditions. We have identified a set of maize (Zea mays L.) genes which have been the subject of a disproportionate share of publications recorded at MaizeGDB. We manually anchored these "classical" maize genes to gene models in the B73 reference genome, and identified syntenic orthologs in other grass genomes. In addition to proofing the most recent version 2 maize gene models, we show that a subset of these genes, those that were identified by morphological phenotype prior to cloning, are retained at syntenic locations throughout the grasses at much higher levels than the average expressed maize gene, and are preferentially found on the maize1 subgenome even with a duplicate copy is still retained on the opposite subgenome. Maize1 is the subgenome that experienced less gene loss following the whole genome duplication in maize lineage 5-12 million years ago and genes located on this subgenome tend to be expressed at higher levels in modern maize. Links to the web based software that supported our syntenic analyses in the grasses should empower further research and support teaching involving the history of maize genetic research. Our findings exemplify the concept of "grasses as a single genetic system," where what is learned in one grass may be applied to another.  相似文献   

8.

Key message

Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI.

Abstract

Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.  相似文献   

9.
 Trait means of marker genotypes are often inconsistent across experiments, thereby hindering the use of regression techniques in marker-assisted selection. Best linear unbiased prediction based on trait and marker data (TM-BLUP) does not require prior information on the mean effects associated with specific marker genotypes and, consequently, may be useful in applied breeding programs. The objective of this paper is to present a flanking-marker, TM-BLUP model that is applicable to interpopulation single crosses that characterize maize (Zea mays L.) breeding programs. The performance of a single cross is modeled as the sum of testcross additive and dominance effects at unmarked quantitative trait loci (QTL) and at marked QTL (MQTL). The TM-BLUP model requires information on the recombination frequencies between flanking markers and the MQTL and on MQTL variances. A tabular method is presented for calculating the conditional probability that MQTL alleles in two inbreds are identical by descent given the observed marker genotypes (G k obs) at the kth MQTL. Information on identity by descent of MQTL alleles can then be used to calculate the conditional covariance of MQTL effects between single crosses given G k obs. The inverse of the covariance matrix for dominance effects at unmarked QTL and MQTL can be written directly from the inverse of the covariance matrices of the corresponding testcross additive effects. In practice, the computations required in TM-BLUP may be prohibitive. The computational requirements may be reduced with simplified TM-BLUP models wherein dominance effects at MQTL are excluded, only the single crosses that have been tested are included, or information is pooled across several MQTL. Received: 22 June 1997 / Accepted: 25 February 1998  相似文献   

10.
Recent updates in comparative genomics among cereals have provided the opportunity to identify conserved orthologous set (COS) DNA sequences for cross-genome map-based cloning of candidate genes underpinning quantitative traits. New tools are described that are applicable to any cereal genome of interest, namely, alignment criterion for orthologous couples identification, as well as the Intron Spanning Marker software to automatically select intron-spanning primer pairs. In order to test the software, it was applied to the bread wheat genome, and 695 COS markers were assigned to 1,535 wheat loci (on average one marker/2.6 cM) based on 827 robust rice–wheat orthologs. Furthermore, 31 of the 695 COS markers were selected to fine map a pentosan viscosity quantitative trait loci (QTL) on wheat chromosome 7A. Among the 31 COS markers, 14 (45%) were polymorphic between the parental lines and 12 were mapped within the QTL confidence interval with one marker every 0.6 cM defining candidate genes among the rice orthologous region.  相似文献   

11.
玉米为雌雄同株异花植物,其雄穗着生于植株顶部,雌穗腋生。雄穗一方面需产生足量花粉以保证雌穗授粉结实,另一方面由于对下部叶片的遮蔽作用和自身营养需求,其生长发育会同时影响叶片光合作用效率和能量分配,因此优化雄穗结构是提高玉米产量的重要措施之一。玉米雄穗性状包括雄穗分枝数、雄穗分枝长度、雄穗主轴长度、雄穗分枝总长度、雄穗分枝角度等,均为多基因控制的数量性状。自20世纪90年代,研究者开始利用数量性状位点(quantitative trait locus,QTL)定位方法解析玉米雄穗性状遗传结构;随着玉米自交系B73等参考基因组释放,以及DNA微阵列、基因组重测序等高通量基因分型技术的日益成熟,全基因组关联分析(genome-wide association study, GWAS)成为数量性状遗传研究的主流方法,目前已鉴定出大量玉米雄穗性状遗传位点。通过总结雄穗性状遗传定位研究结果,构建一致性图谱并挖掘定位热点区间,有助于进一步了解雄穗性状遗传结构特征及指导雄穗性状候选基因克隆。此外,通过对调控雄穗发育的已知基因进行功能分类,可为解析玉米雄穗发育的遗传网络和调控通路提供理论支撑。  相似文献   

12.
Grain weight is a major determinant of rice grain yield and is widely believed to be controlled by quantitative trait loci (QTL). We have previously reported a new major gene, Mi3, regulating grain length in rice, and that the Mi3 allele from Y34 functioned in a dominant manner. In this paper we report the fine mapping and candidate analysis of Mi3. By employing a chromosome walking strategy in the F2 population of 9311/Y34, the Mi3 gene was finally narrowed to an interval of ~?41.6?kb between the markers RM6881 and LM9 in the pericentromeric region of rice chromosome 3. According to the rice genome annotations, five putative gene loci, LOC_Os03g_29614, LOC_Os03g_29630, LOC_Os03g_29650, LOC_Os03g_29660 and LOC_Os03g_29680, were located in this candidate region. Mi3 was also determined to be a new gene for grain size in rice by allelic analysis with the previously reported genes. Our results will facilitate the cloning and functional characterization of the Mi3 gene and targeted marker-assisted breeding.  相似文献   

13.
The associations of candidate genes with quantitative trait loci (QTL) for insect resistance provide primary insight into the molecular mechanisms of resistance. The objectives of the present study were to genetically map the candidate genes and identify their association with shoot fly resistance, and update the genetic map with new markers to locate additional QTL. In this study, 80 candidate gene (CG)-based markers were developed, targeting the seven most important shoot fly resistance genomic regions reported in our previous study. Of the 17 polymorphic CGs, the allelic polymorphisms of seven genes were significantly associated with 18 major QTL for component traits of resistance in multiple QTL mapping (MQM), and two genes in the single-marker analysis. MQM with an updated map revealed 20 new QTL with LOD and R 2 (%) values ranging from 2.6 to 15.6 and 5.5 to 34.5?%, respectively. The susceptible parent 296B contributed resistance at 10 QTL. Interestingly, an orthologous insect resistance gene Cysteine protease-Mir1 (XnhsbmSFC34/SBI-10), previously presumed to be a CG based on synteny with maize, was significantly associated with major QTL for all traits (except seedling vigor) explaining 22.1?% of the phenotypic variation for deadhearts%, a direct measure of shoot fly resistance. Similarly, a NBS?CLRR gene (XnhsbmSFCILP2/SBI-10), involved in rice brown planthopper resistance, was associated with deadhearts% and number of eggs per plant. Beta-1,3-glucanase (XnhsbmSFC4/SBI-10), involved in aphid and brown planthopper resistance, was associated with deadhearts% and leaf glossiness. Comparative QTL analysis revealed the existence of common QTL for shoot fly and other important sorghum insect pests such as greenbug, head bug, and midge. Finally, the associated CGs should aid in elucidating the molecular basis of resistance, high-resolution mapping, and map-based cloning of major QTL, besides providing powerful gene tags for marker-assisted selection of shoot fly resistance.  相似文献   

14.
玉米是世界上种植面积最大、总产量最高的粮食作物,其籽粒重量的70%来自于淀粉。淀粉不仅是人类及其他动物的主要能量来源,同时也是化工等行业的重要原料。利用拟南芥、水稻等模式植物,淀粉合成相关基因克隆与功能研究已取得较多进展。近年来,随着玉米淀粉含量相关遗传学研究的深入开展,通过数量性状位点(quantitative trait locus mapping,QTL)定位、全基因组关联分析(genome-wide association study, GWAS)及各种组学分析方法,发现了较多新的与淀粉含量相关的遗传位点及候选基因,但是尚缺乏归纳总结。综述了玉米籽粒淀粉合成与调控研究进展,对玉米籽粒淀粉含量相关的QTL和基因进行汇总和分析,通过构建一致性物理图谱,提炼玉米籽粒淀粉含量遗传定位热点区间,这为进一步解析玉米籽粒淀粉合成与代谢相关基因的功能提供参考,并为分子标记辅助育种提供遗传资源。  相似文献   

15.
For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.  相似文献   

16.
The yield of maize grain is a highly complex quantitative trait that is controlled by multiple quantitative trait loci (QTLs) with small effects, and is frequently influenced by multiple genetic and environmental factors. Thus, it is challenging to clone a QTL for grain yield in the maize genome. Previously, we identified a major QTL, qKNPR6, for kernel number per row (KNPR) across multiple environments, and developed two nearly isogenic lines, SL57-6 and Ye478, which differ only in the allelic constitution at the short segment harboring the QTL. Recently, qKNPR6 was re-evaluated in segregating populations derived from SL57-6×Ye478, and was narrowed down to a 2.8 cM interval, which explained 56.3% of the phenotypic variance of KNPR in 201 F2∶3 families. The QTL simultaneously affected ear length, kernel weight and grain yield. Furthermore, a large F2 population with more than 12,800 plants, 191 recombinant chromosomes and 10 overlapping recombinant lines placed qKNPR6 into a 0.91 cM interval corresponding to 198Kb of the B73 reference genome. In this region, six genes with expressed sequence tag (EST) evidence were annotated. The expression pattern and DNA diversity of the six genes were assayed in Ye478 and SL57-6. The possible candidate gene and the pathway involved in inflorescence development were discussed.  相似文献   

17.
Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.  相似文献   

18.
The intervals containing two major quantitative trait loci (QTL) from a Spanish barley landrace conferring broad spectrum resistance to Blumeria graminis were subjected to marker saturation. First, all the available information on recently developed marker resources for barley was exploited. Then, a comparative genomic analysis of the QTL regions with other sequenced grass model species was performed. As a result of the first step, 32 new markers were added to the previous map and new flanking markers closer to both QTL were identified. Next, syntenic integration revealed that the barley target regions showed homology with regions on chromosome 6 of rice (Oryza sativa), chromosome 10 of Sorghum bicolor and chromosome 1 of Brachypodium distachyon. A nested insertion of ancestral syntenic blocks on Brachypodium chromosome 1 was confirmed. Based on sequence information of the most likely candidate orthologous genes, 23 new barley unigene-derived markers were developed and mapped within the barley target regions. The assessment of colinearity revealed an inversion on chromosome 7HL of barley compared to the other three grass species, and nearly perfect colinearity on chromosome 7HS. This two-step marker enrichment allowed for the refinement of the two QTL into much smaller intervals. Inspection of all predicted proteins for the barley unigenes identified within the QTL intervals did not reveal the presence of resistance gene candidates. This study demonstrates the usefulness of sequenced genomes for fine mapping and paves the way for the use of these two loci in barley breeding programs.  相似文献   

19.
20.
Drought is a major constraint in sorghum production worldwide. Drought-stress in sorghum has been characterized at both pre-flowering and post-flowering stages resulting in a drastic reduction in grain yield. In the case of post-flowering drought stress, lodging further aggravates the problem resulting in total loss of crop yield in mechanized agriculture. The present study was conducted to identify quantitative trait loci (QTLs) controlling post-flowering drought tolerance (stay green), pre-flowering drought tolerance and lodging tolerance in sorghum using an F7 recombinant inbred line (RIL) population derived from the cross SC56×Tx7000. The RIL lines, along with parents, were evaluated for the above traits in multiple environments. With the help of a restriction fragment length polymorphism (RFLP) map, which spans 1,355 cM and consists of 144 loci, nine QTLs, located over seven linkage groups were detected for stay green in several environments using the method of composite interval mapping. Comparison of the QTL locations with the published results indicated that three QTLs located on linkage groups A, G and J were consistent. This is considered significant since the stay green line SC56 used in our investigation is from a different source compared to B35 that was used in all the earlier investigations. Comparative mapping has shown that two stay green QTLs identified in this study corresponded to stay green QTL regions in maize. These genomic regions were also reported to be congruent with other drought-related agronomic and physiological traits in maize and rice, suggesting that these syntenic regions might be hosting a cluster of genes with pleiotropic effects implicated in several drought tolerance mechanisms in these grass species. In addition, three and four major QTLs responsible for lodging tolerance and pre-flowering drought tolerance, respectively, were detected. This investigation clearly revealed the important and consistent stay green QTLs in a different stay green source that can logically be targeted for positional cloning. The identification of QTLs and markers for pre-flowering drought tolerance and lodging tolerance will help plant breeders in manipulating and pyramiding those traits along with stay green to improve drought tolerance in sorghum. Received: 2 June 2000 / Accepted: 15 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号