首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last 10 years, the use of nets to protect pome fruit from hailstorms has increased. In this study, we investigated the effect of these nets on the behavior of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a major pest of apple, Malus domestica Borkh. (Rosaceae). Experiments were carried out in net‐covered and uncovered apple orchards treated with conventional insecticides. The number of codling moth males caught in pheromone‐ and virgin female‐baited traps was significantly reduced in net‐covered compared to uncovered plots. In addition, inhibition of mating by the net was demonstrated by significant reductions in mating of tethered virgin females. Fruit injury was consistently lower in net‐covered plots vs. uncovered plots. Because of the reductions in male trap catch, the reduced female mating frequency, and the lower level of damage, we conclude that flat anti‐hail nets have a disruptive effect on the reproductive behavior of the codling moth.  相似文献   

2.
Multiple applications of hydrophobic kaolin particle film in apple orchards suppressed numbers of blossom weevil (Anthonomus pomorum), brown leaf weevil (Phyllobius oblongus), attelabid weevil (Caenorhinus pauxillus), leafhoppers (Empoasca vitis and Zygina flammigera) and green apple aphid (Aphis pomi) colonies. The kaolin treatments reduced the apple sawfly (Hoplocampa testudinea) fruit infestation on cultivar J. Grieve, and the fruit damage caused by oyster scale (Quadraspidiotus ostreaeformis), mussel scale (Lepidosaphes ulmi), early caterpillars, leaf rolling moths (Tortricidae), fruitlet‐mining tortrix moth (Pammene rhediella) and codling moth (Cydia pomonella). There was no effect on the number of colonies of rosy leaf curling aphid (Dysaphis devecta), nor on the fruit damage caused by common earwig (Forficula auricularia) and apple sawfly on cv. G. Delicious. The level of infestation of rosy apple aphid (Dysaphis plantaginea), leaf miner moths (Phyllonorycter blancardella, Lyonetia clerkella), and agromyzid flies (Phytomyza heringiana) increased in the kaolin‐treated plots. Kaolin treatments promoted woolly apple aphid (Eriosoma lanigerum) infestation, which became severe, while it reduced the abundance of polyphagous predators like F. auricularia, predaceous Heteroptera and Coleoptera, the red velvet mite (Allothrombium fuliginosum), spiders (Araneae) and the abundance of common black ant (Lasius niger). The treatments also reduced parasitism of the apple sawfly by the ichneumonid Lathrolestes ensator. Many weeks after ending the kaolin treatments, the number of predaceous Coleoptera and especially the number of spiders remained low in the kaolin‐treated plots.  相似文献   

3.
An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1?=?Discovery × TN10-8, C2?=?Fiesta × Discovery, C3?=?Discovery × Prima, C4?=?Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ 2?=?16.53, df?=?16, p?=?0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.  相似文献   

4.
During host plant selection and particularly after alighting on a plant, chemical cues from the plant surface influence an insect's acceptance of the plant and, subsequently, its egg‐laying behaviour. Primary metabolites in the phylloplane may be more important than hitherto known. We have shown that soluble carbohydrates, such as glucose, fructose, and sucrose, and sugar alcohols, such as sorbitol, quebrachitol, and myo‐inositol, can be detected by insects after contacting the plant and that they positively influence egg‐laying of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), on apple trees. We addressed the question whether a lack of these substances could also explain apple tree resistance to C. pomonella in terms of reduced egg‐laying. Leaf surface washings were collected in an apple orchard by spraying water on the resistant cultivar X65‐11 and on the susceptible cultivar P5R50A4. The washings were tested on a nylon cloth on isolated females under no‐choice conditions. The washings were analysed and synthetic blends, each consisting of the six metabolites in the proportions established in the leaf surface washings of both cultivars, were then tested for their effect on egg‐laying of C. pomonella. Dose–response egg‐laying tests were carried out on substrates impregnated with the X65‐11 leaf surface blend at 1, 100, 1 000, and 10 000 times the natural dose. Egg‐laying behaviour in the bioassays with leaf surface washings of both cultivars closely resembled egg‐laying in the orchard. Washings of P5R50A4 stimulated egg‐laying to a greater extent than those of X65‐11 and the water control. Synthetic blends reduced substrate acceptance and egg‐laying, compared to the washings of X65‐11. Ratios between components within the blend are responsible for this resistance. In conclusion, quantities and ratios of the six primary metabolites found on the leaf surface may influence host preference of C. pomonella as well as their egg‐laying behaviour, thus they may play a role in the trees’ resistance to the codling moth.  相似文献   

5.
Volatile compounds from the apple, Malus domestica Borkh. (Rosaceae), change considerably as the season progresses, and this is successfully exploited by the female codling moth Cydia pomonella L. (Lepidoptera, Tortricidae), as it searches for oviposition sites. In this study, we investigated the effect of seasonal emissions of apple fruit volatiles on the host location behaviour of a parasitoid of the codling moth larvae, Hyssopus pallidus (Askew) (Hymenoptera: Eulophidae). In dual choice olfactory bioassays, the behaviour of the parasitoid in response to apple cues was observed over the complete 2003 growing season. Our results show that codling moth infested apples evoked a strong response from the parasitoid at the beginning of the season, until July. Then, attraction dropped drastically, increasing again at the beginning of August. At the end of the growing season, just prior to harvest, infested apples hardly evoked any behavioural response. Interestingly enough, mid‐season emissions of healthy apples were per se attractive to the parasitoid, and even preferred over volatiles from infested apples. Simultaneous volatile collections from healthy apples on twigs in the field were analysed throughout the season, showing that the overall quantity of headspace volatiles peaks at the beginning of June and mid‐August. The seasonal volatile emission is correlated with the behaviour of the parasitoid during the fruit ripening stage. The results are discussed in relation to the use of H. pallidus as a potential biocontrol agent, in order to enhance current integrated pest management (IPM) programs.  相似文献   

6.
Although fire blight, caused by the bacterium Erwinia amylovora, is one of the most destructive diseases of apple (Malus × domestica) worldwide, no major, qualitative gene for resistance to this disease has been identified to date in apple. We conducted a quantitative trait locus (QTL) analysis in two F1 progenies derived from crosses between the cultivars Fiesta and either Discovery or Prima. Both progenies were inoculated in the greenhouse with the same strain of E. amylovora, and the length of necrosis was scored 7 days and 14 days after inoculation. Additive QTLs were identified using the mapqtl software, and digenic epistatic interactions, which are an indication of putative epistatic QTLs, were detected by two-way analyses of variance. A major QTL explaining 34.3–46.6% of the phenotypic variation was identified on linkage group (LG) 7 of Fiesta in both progenies at the same genetic position. Four minor QTLs were also identified on LGs 3, 12 and 13. In addition, several significant digenic interactions were identified in both progenies. These results confirm the complex polygenic nature of resistance to fire blight in the progenies studied and also reveal the existence of a major QTL on LG7 that is stable in two distinct genetic backgrounds. This QTL could be a valuable target in marker-assisted selection to obtain new, fire blight-resistant apple cultivars and forms a starting point for discovering the function of the genes underlying such QTLs involved in fire blight control.  相似文献   

7.
Two decades of investigations on maize resistance to Mediterranean corn borer (Sesamia nonagrioides Lefebvre; MCB) have shown that breeding for increased resistance to stem tunnelling by MCB often resulted in reduced yield because significant genetic correlation between both traits exists in some backgrounds. Unlike phenotypic selection, marker‐assisted selection (MAS) could differentiate markers linked only to one trait from those linked simultaneously to yield potential and susceptibility to the pest. In the current study, the suitability of MAS for improving resistance to stem tunnelling without adverse effects on yield has been tested. The unfavourable genetic relationship between yield potential and susceptibility could be overcome using MAS. Gains obtained using MAS were weak, because genetic variance explained by the quantitative trait loci (QTL) was low but results encourage us to persevere in using marker information for simultaneous improvement of resistance and yield especially if genome‐wide approaches are applied. Approaches to detect QTL are widely used, but studies on the suitability of markers linked to QTL for performing MAS have been mostly neglected.  相似文献   

8.
Sex pheromone mating disruption (MD) is an approach used to control several moth pest species of pome fruit by disrupting the ability of the males to find females and consequently prevent mating. The following experiments were performed to determine the effectiveness of several new and experimental sex pheromone MD technologies, and dispenser densities for simultaneous control of the codling moth (CM), Cydia pomonella (L.), and the oriental fruit moth (OFM), Grapholita molesta (Busck) (both Lepidoptera: Tortricidae), in Pennsylvania apple orchards. In one study, three MD approaches to control CM and oriental fruit moth – CM and OFM Disrupt Micro‐Flakes, Isomate CM/OFM TT, and both a CideTrak OFM and a CideTrak CM dispenser containing both codlemone and pear ester – and an insecticides‐only treatment were compared over the course of 2 years. In the other studies, the efficacy of several CheckMate Duel dispenser densities (i.e., 250, 375, 425, and 500 dispensers ha?1) were compared against Isomate CM/OFM TT, and an insecticides‐only treatment. The CideTrak CM/pear ester combination and Isomate CM/OFM TT treatments both substantially reduced CM captures in traps in 2007 and 2008. Meanwhile, OFM trap shutdown was highest in the CheckMate Duel densities of 375 (99.9 ± 0.08%) and 500 dispensers ha?1 (98.9 ± 0.07%) and the Isomate CM/OFM TT treatment (98.0 ± 1.13%), and lowest in the 250 dispensers ha?1 density treatment (94.3 ± 3.23%). In orchards where OFM is the dominant pest species, a CheckMate Duel dispenser density of 375 ha?1 is necessary for effective control, whereas higher densities are needed to control CM.  相似文献   

9.
Abstract 1 Based on climate data from a network of agrometeorological stations in Norway, the effects of current and future climate regimes on the spatial and temporal distribution of the Codling moth (Cydia pomonella) and the establishment potential of the Colorado potato beetle (Leptinotarsa decemlineata) were investigated. 2 The study was accomplished using climex , a dynamic climate matching‐ and climate response estimation model, which predicts potential distribution of an organism based on its known geographical distribution. 3 Validation of the climex model predictions for C. pomonella against field data on spatial distribution of the species in Norway resulted in a refined set of climate response parameters for C. pomonella. Temporal occurrence of C. pomonella seems to be affected by climate (temperature) and insecticide treatment against the Apple fruit moth (Argyresthia conjugella) in the previous season. 4 Climate change scenarios (0.1 °C increase per degree in latitude in daily maximum and minimum temperatures) indicated an extension of the potential geographical range for C. pomonella, and 23 new locations were found favourable for its long‐term survival. The abundance and pest status of C. pomonella could increase dramatically in those locations where the species is already established. 5 Leptinotarsa decemlineata would only temporarily find suitable climate conditions in Norway and hence only be able to establish interim populations in a few regions under current climate conditions. Climate change scenarios for L. decemlineata indicated that the species would be able to establish as far north as 64°N, mainly in the inland of eastern Norway. 6 In general, the methods applied support the process of decreasing the uncertainty both in our knowledge about the pests themselves and about the environment, which are crucial elements in predicting whether a species is able to establish in a new area.  相似文献   

10.
Two studies were conducted to test the feasibility and efficacy of using physical barriers (Maggot Barrier® nylon mesh bags) for control of three internal pests of tree fruit (codling moth (Cydia pomonella L.), apple maggot (Rhagoletis pomonella (Walsh)) and peach twig borer (Anarsia lineatella Zeller)) and three groups of external direct pests (stink bugs (Pentatomidae), plant bugs (Miridae) and birds). Two types of Maggot Barrier® were tested (regular and heavy duty), and two methods of securing the bags: knotting the bag on itself (‘self‐ties’) and using plastic‐coated wire ‘twist‐ties’. Bags were applied to eight cultivars of both apples and peaches, selected to give a range of maturity dates. Apples were bagged when fruit was approximately 27 mm in diameter, and peaches when the fruit was approximately 36 mm in diameter. Unbagged fruits served as controls. On apples, bagging had no effect on damage due to birds, stink bugs or apple maggot (which was present only in very low numbers), but reduced codling moth damage by 20–25% compared with unbagged controls; there were no significant differences due to bag type or tie type. In apples, a significantly higher proportion of the heavy duty bags were reusable after harvest, but on peaches, which were bagged for a shorter time, there was no difference between bag types in this respect. Bagging significantly reduced the percentage of peach fruits damaged by twig borer, birds and stink bugs, but increased the percentage of fruit with skin marks; there were no significant differences between bag or tie types. In peaches, there were significant effects on the time taken to apply bags due to both tying method and differences between individual operators. Cultivar affected pest‐related damage in both fruit types, underlining the importance of appropriate cultivar choice in pest management, particularly for organic growers and home gardeners.  相似文献   

11.
Plant architecture of apple trees in commercial orchards was rapidly changed from traditional tall trees to dwarf trees to optimize yield and fruit quality. Additionally, hail nets are widely used to prevent yield loss by hail. These changes are expected to considerably influence the orchard microclimate and thus the developmental rates of pest insects in apple. However, these relationships have not yet been fully elucidated. The present study was conducted over the seasonal cycle to investigate the influence of plant architecture and hail nets on the habitat temperatures of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in apple, Malus domestica Borkh. (Rosaceae). Within the canopies, leaf area index (LAI) and global site factor (GSF) were quantified using hemispherical photography. Temperature was analysed for the main habitats of the different codling moth stages, i.e., air within the canopy, bark of tree stems, and apple fruit. In dwarf trees, LAI was lower, leading to a higher GSF than in tall trees. Hail nets did not influence LAI and GSF. Results for dwarf trees compare as follows with those for tall trees: Average air temperatures within the canopy were 0.7 °C higher during daytime, whereas 0.4 °C lower at night. Mean surface temperatures of bark were 0.9 °C higher on sunny and 0.4 °C on overcast days. Mean surface temperatures of apple fruits were 1.8–2.7 °C higher on sunny days, but 0.6 °C cooler on overcast days. The effect of hail nets was confined to a reduction of the air temperature within the canopy by approximately 0.2–0.8 °C. Bark and apple surface temperatures were not significantly affected. Based on the temperature differences in the habitats considered, the calculated development of the codling moth in dwarf trees was on average 3 days faster than in tall trees. The calculations imply a negligible effect of hail nets on codling moth development.  相似文献   

12.
13.
The codling moth Cydia pomonella (L.) (Lepidoptera Tortricidae) is a key pest of pome fruit (apple, pear and quince) and walnut orchards in most temperate regions of the world. Efforts to control the codling moth in the past mostly relied on the use of broad spectrum insecticide sprays, which has resulted in the development of insecticide resistance, and the disruption of the control of secondary pests. In addition, the frequent reliance and use of these insecticides are a constant threat to the environment and human health. Consequently, there have been increased demands from the growers for the development of codling moth control tactics that are not only effective but also friendly to the environment. In that respect, the sterile insect technique (SIT) and its derivative, inherited sterility (IS), are, together with mating disruption and granulosis virus, among the options that offer great potential as cost‐effective additions to available control tactics for integration in area‐wide integrated pest‐management approaches. In support of the further development of the SIT/IS for codling moth control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a 5‐year Coordinated Research Project (CRP) entitled ‘Improvement of codling moth SIT to facilitate expansion of field application’. Research focussed on sterile codling moth quality and management (e.g. mobility and life‐history traits in relation to rearing strategy, dispersal, flight ability, radiosensitivity and mating compatibility) and a better understanding of the basic genetics of codling moth to assist the development of genetic sexing strains (e.g. cytogenetics, the development of dominant conditional lethal mutations, molecular characterization of the sex chromosomes, sex identification in embryos and cytogenetic markers). The results of the CRP are presented in this special issue.  相似文献   

14.
The rate of entry by neonate larvae of the frugivorous codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), into fruit material was investigated. We used no‐choice bioassays in climate‐controlled rooms to assay larval entry across four host plant species (apple, pear, quince, walnut) and three varieties within a single fruit species (apple). Larvae successfully entering apples were reared to adulthood, and we collected tissue samples from apples which were successfully colonized in order to determine sucrose concentrations. This information was used to evaluate differences in adult moth size, development time, and pulp sucrose concentration due to apple variety. Four important findings emerged: (1) neonate larvae had the highest frequency of entry (86% of larvae) into apple fruits, compared with pear (78%), quince (56%), and walnut (32%); (2) the frequency of larval entry into immature apples differed across apple varieties, and larval entry rate was highest in variety Golden Delicious (72%), compared with Granny Smith (46%) and Red Delicious (64%); (3) on average, adult moths were larger and development times were shorter on the variety with the highest entry frequency (Golden Delicious); and (4) apple pulp sucrose concentrations were higher for Golden Delicious (17.5 μg mg?1) than for either Granny Smith (15.9 μg mg?1) or Red Delicious (15.1 μg mg?1) varieties, which correlates positively with entry and development data. We conclude that host fruit species and varietals within a species affect the entry rate of neonate codling moth larvae in no‐choice assays. We hypothesize that larval development is influenced by mean sucrose concentrations or other phytochemical differences associated with host fruit varieties.  相似文献   

15.
 Masting of rowan Sorbus aucuparia L. has been studied in 45 sites in southern Norway for 22 years. We present data on the year-to-year variation in fruit setting of rowan, and show that masting is spatially synchronous in Norway and probably all over Fennoscandia. The apple fruit moth Argyresthia conjugella Zeller is an important seed predator on rowan. We present data on the abundance of apple fruit moth in rowanberries during these years and discuss the consequences of masting and intermasting of rowan for apple fruit moth as a pest of apple. We conclude that growth and climate have little impact on flowering intensity and suggest that masting of rowan is an adaptive defense against seed predation and a new example of predator satiation: intermast years inhibit predators and prepare the rowan for the subsequent mast. Received: September 3, 2001 / Accepted: February 24, 2003  相似文献   

16.
Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to insecticides has become a major problem in many apple and pear production areas. Our aim was to determine the level of insecticide resistance in Spanish field populations. Seven field populations collected from apple, Malus domestica Borkhausen (Rosaceae), orchards, and three laboratory susceptible strains of codling moth were studied. Damage at harvest in all the conventional orchards from which codling moth populations were collected was higher than the economic threshold. The efficacy of eight insecticides, with five modes of action, was evaluated by topical application of the diagnostic concentrations on post‐diapausing larvae. The enzymatic activity of mixed‐function oxidases (MFOs), glutathione transferases (GSTs), and esterases (ESTs) was evaluated for each population. The susceptibility to insecticides and the biochemical activity of the three laboratory strains and one organic orchard population were not significantly different. Field populations were less susceptible to the tested insecticides than the susceptible strains, especially for azinphos‐methyl, diflubenzuron, fenoxycarb, and phosalone. The efficacy of all insecticides was significantly dependent on the activity of MFOs. Only the toxicity of the three insecticides most used in Spain when the populations were collected (azinphos‐methyl, fenoxycarb, and phosalone) was also dependent on the activity of ESTs and GSTs activity. We conclude that the control failures were because of the existence of populations resistant to the main insecticides used.  相似文献   

17.
Microsatellite (simple sequence repeats, SSR) and mitochondrial DNA markers were used to assess the structure of European codling moth populations showing different levels of susceptibility towards one of the most important biocontrol agents used in apple production, the Cydia pomonella granulovirus CpGV-M. In 638 C. pomonella individuals from 33 different populations a total of 92 different alleles were scored using six SSR loci. The global estimate of genetic differentiation for all 33 populations was not significantly different from zero, thus indicating a lack of genetic differentiation. AMOVA analysis revealed a very weak but significant variance among C. pomonella populations from different geographic regions, however, no significant variation was evident between CpGV-M resistant or susceptible C. pomonella populations. Sequence analysis of a fragment of the cytochrome oxidase subunit 1 in eight C. pomonella populations resulted in 27 haplotypes, which were grouped in two distinct clusters. Again, no genetic differentiation between CpGV-M resistant and susceptible codling moth populations was detectable. In addition, Structure analysis using microsatellites and association tests with mtDNA haplotypes found neither population-level nor individual correlations associated with CpGV-M resistance. Accordingly, this lack of population structure does not allow discriminating between one or several, separate origins of CpGV-M resistance.  相似文献   

18.
Many moth pheromones and synthetic attractants have been used to monitor or decrease pest populations. However, due to their low economic efficiencies and narrow target specificities these methods are of limited use for trapping pests in large agricultural fields. In an effort to address this problem, we selected oak (Quercus serrata) sawdust media fermented by the yeast strain Pichia anomala, and examined its ability to attract lepidopteran moth pests for mass trapping in an apple (Malus domestica) orchard. A total of 57 taxa were trapped, including 42 species of lepidopteran pests. The most frequently caught lepidopteran pests included Adoxophyes orana (40.0 ± 3.5 individuals/trap/week), Oraesia excavata (35.5 ± 2.5), and Adris tyrannus amurensis (35.5 ± 2.5). Notably, less fruit damage was recorded in the experimental orchard versus a trap-free neighboring control orchard. These results suggest that adult moths might be effectively attracted and mass captured using P. anomala-fermented oak sawdust media as bait.  相似文献   

19.
Cydia pomonella (L.) was firstly reported in China in the 1950s and considered as one of the most serious invasive pest in fruit orchards of China. It spread rapidly from the original site in Xinjiang to other northwestern regions. The pest has further penetrated northeastern China since 2006. With its rapid invasion rate, most pome fruit production areas of China are being threatened. As yet there has been no research into the genetic diversity and structure of the codling moth population in China. We investigated the genetic variations of 12 C. pomonella populations collected from the main distribution regions (Xinjiang, Gansu and Heilongjiang Provinces) in China and compared them with one German and one Swiss population using eight microsatellites loci to infer the characteristics of genetic diversity and genetic structure. We observed sequential loss of genetic diversity and significant structuring associated with distribution but no significant correlation between genetic distance and geographic distance among northwestern populations. There was no genetic evidence for bottleneck effects in any of the populations. The results suggest that the loss of genetic diversity in C. pomonella populations resulted from the successive colonization of founder populations. Recent invasion history led to the lack of any bottleneck effect. The high level of population genetic structuring is related to the weak flight capacity of the codling moth and the human-aided dispersal rather than to geographic distance. These genetic data not only provide us with an understanding of the micro-evolutionary processes related to successful biological invasions, but also provide guidance for pest management strategies.  相似文献   

20.
The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind‐directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号