共查询到3条相似文献,搜索用时 15 毫秒
1.
Effects of the non-indigenous cladoceran Cercopagis pengoi on the lower food web of Lake Ontario 总被引:1,自引:0,他引:1
Corey L. Laxson Kerry N. McPhedran Joseph C. Makarewicz Irena V. Telesh Hugh J. Macisaac 《Freshwater Biology》2003,48(12):2094-2106
1. In North America, the invasive predatory cladoceran Cercopagis pengoi was first detected in Lake Ontario. We explored the impact of Cercopagis on the lower food web of Lake Ontario through assessments of historical and seasonal abundance of the crustacean zooplankton, by conducting feeding experiments on the dominant prey of the invader, and by estimating its food requirements. 2. Between 1999 and 2001, a decrease in the abundance of dominant members of the Lake Ontario zooplankton community (Daphnia retrocurva, Bosmina longirostris and Diacyclops thomasi) coincided with an increase in the abundance of Cercopagis. Daphnia retrocurva populations declined despite high fecundity in all 3 years, indicating that food limitation was not responsible. Chlorophyll a concentration generally increased, concomitant with a decline in the herbivorous cladoceran zooplankton in the lake. 3. Laboratory experiments demonstrated that Cercopagis fed on small‐bodied species including D. retrocurva and B. longirostris. 4. Consumption demand of mid‐summer populations of Cercopagis, estimated from a bioenergetic model of the confamilial Bythotrephes, was sufficient to reduce crustacean abundance, although the degree of expected suppression varied seasonally and interannually. 5. Predatory effects exerted by Cercopagis on the Lake Ontario zooplankton, while initially very pronounced, have decreased steadily as the species became established in the lake. 相似文献
2.
Summary Some properties of community structure are explored using co-evolutionary theory. We consider mathematical models of food webs in which all species in a community adopt foraging behaviours and antipredator behaviours that maximize individual fitness. If the antipredator behaviour of a prey is effective against all its enemies, the number of prey—predator links in a food web must be less than the sum of the numbers of prey and predator species. However, if an increase in a prey's attention to one type of predator decreases its attention to another type of predator, there may be no limit on the number of predator species using a common set of prey species. Predator-specific defence allows a much more complex community structure than non-specific defence. Predator-specific defence more frequently allows a large niche overlap between predators than does non-specific defence. The high connectivity of some fish communities in Lake Tanganyika may be an example of this phenomenon. 相似文献
3.
GERARD P. GLOSS 《Austral ecology》1996,21(2):217-223
Abstract The impact of predation over a 3 week period by the small (mean length 53 mm) salmoniform fish, Galaxias olidus, on the invertebrate communities in the still summer pools of an intermittent stream in southeastern Australia was tested using enclosures that incorporated both deep and shallow habitat areas. Twenty G. olidus, a key generalist predator in the system studied, were enclosed for 3 weeks in 1.5 × 1.7 m enclosures. Galaxias olidus was found to reduce significantly the distribution and abundance of air-breathing nektonic species. In contrast, the abundance of non-air-breathing nektonic species increased in the presence of fish in the deep areas of the enclosures. There was no significant impact offish predation on species richness, total abundance, epibenthic or interstitial species. The most likely reason for the general lack of response to the presence of fish by epibenthic and interstitial species is the availability of abundant spatial refugia from predation within the complex substrate of the stream. In contrast, air-breathing nektonic species are vulnerable to predation by fish due to the lack of refuges in the open water. Increases in the abundance of non-air-breathing nektonic species in the presence of fish may be related to reductions in the abundance of predatory dytiscid beetles. Significant differences between deep and shallow habitats were observed in total abundance and species richness, and in the abundances of air-breathing nektonic and epibenthic species, suggesting that physicochemical factors play a key role in determining invertebrate distribution within stream pools. 相似文献