首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为揭示小叶锦鸡儿(Caragana microphylla)天然居群叶形态性状的变异规律及其生态适应性特征,该研究以10个小叶锦鸡儿天然居群为对象,通过多重比较、巢式方差分析、相关性分析、聚类分析和主成分分析等方法,对7个叶形态性状进行分析。结果表明:(1)小叶锦鸡儿叶形态性状在居群内和居群间均存在极显著差异(P < 0.01),平均变异系数为10.13%,不同性状的变异幅度为6.23%~12.78%;平均叶形态性状的表型分化系数为43.62%,居群内变异(30.09%)大于居群间变异(24.91%),说明居群内是其叶形态性状变异的主要来源。(2)相关性分析表明,环境因子对小叶锦鸡儿的叶形态性状变异有很大的影响,在地理空间上主要呈现出沿海拔梯度的变异模式;主成分分析的结果显示,小叶宽、叶柄宽和叶柄长对小叶锦鸡儿叶形态变异起主导作用;利用欧式距离对小叶锦鸡儿居群进行UPGMA聚类分析结果显示,基于叶形态性状和环境因子可分别将小叶锦鸡儿10个居群分为3类和2类,Mantel检验结果表明,小叶锦鸡儿的叶形态性状变异不存在地理连续性。研究结果为小叶锦鸡儿的适应性进化和开发利用提供了理论依据。  相似文献   

2.
新疆野扁桃天然居群形态变异的研究   总被引:10,自引:0,他引:10  
为了从数量上分析新疆野扁桃(Amygdalus ledebouriana)天然居群表型性状在居群间和居群内的变异,我们于2007年对分布存新疆的5个野扁桃天然居群的8个表型性状进行了测量和比较分析.结果表明:新疆野扁桃表型性状在居群间和居群内均存在着较丰富的差异,居群内的变异大于居群间的变异,居群间的分化相对较小;利用居群问欧氏距离进行UPGMA聚类分析表明,5个天然居群可以划分为3类,表型性状的欧式遗传距离与地理距离相关不显著.主成分综合分析结果显示:新梢长宽比、叶片长宽比、果核千粒重、果核长宽比及花冠直径等5个表型性状指标是反映新疆野扁桃表型差异的主要因素.  相似文献   

3.
浙江省野生蜡梅花部形态变异及其与环境因子的相关性   总被引:1,自引:0,他引:1  
杜会聪  蒋雅婷  田敏  张莹  王彩霞 《生态学报》2018,38(16):5800-5809
以浙江省蜡梅自然分布区的5个居群为研究对象,采用巢式方差分析、主成分分析、相关分析、聚类分析等多种分析方法,探究蜡梅花部的形态变异及其与环境因子相关性以及居群间和居群内的表型多样性。结果表明:蜡梅花部性状中除雄蕊长度、雌蕊数、雌蕊长度、内被片数以外,其他12个性状在居群间均有极显著差异。胚珠数的平均变异系数最大,花冠内径的平均变异系数最小,各性状的平均变异系数为15.03%(10.81%—23.38%)。五尖山的表型多样性最丰富,碧东山居群最小,种群间平均表型分化系数为44.38%(1.57%—89.62%),种群内变异大于种群间变异,种群内变异是花部变异的主要来源。主成分分析显示花冠直径、花冠内径、花筒深度和中被片长对种群变异起主要贡献作用。花部多数性状间存在显著或极显著的相关关系,生态因子中花部性状与土壤酸度相关性最大,土壤中花部性状与大量元素相关性最大,微量元素次之,中量元素最小。通过UPGMA聚类分析可以将5个种群分成两组。浙江省野生蜡梅花部形态存在丰富的变异和多样性,花部部分性状与土壤中钙、铁、铜含量和海拔有显著或极显著相关关系。  相似文献   

4.
为了解白檀在湖南地区不同环境的适应性及遗传变化程度,对湖南地区6个白檀天然居群的189个个体的11个表型性状进行形态遗传多样性分析。结果表明,11个表型性状均具有丰富的遗传多样性(H'=1.389),居群间的平均方差分量为52.60%,居群内的平均方差分量为37.03%,说明在白檀形态性状多样性分布上是居群间多样性程度大于居群内,即居群间的形态变异是白檀形态变异的主要来源。聚类分析结果表明,6个居群的表型性状并没有严格依地理距离聚类,主成分与相关分析结果显示在11个表型中树型因子是主要形态变异因子,年降雨量与树型因子呈显著正相关,其他表型变异受遗传的影响可能大于受环境的影响。  相似文献   

5.
油松天然群体的种实性状表型多样性研究   总被引:1,自引:0,他引:1  
为了揭示油松天然种群在不同地理环境条件下表型变异的程度和规律,在油松整个天然分布范围内选择了12个具有代表性的居群作为研究对象,对其球果、种子、种翅等12个种实性状的变异程度及其与环境因子间关系进行了比较分析。结果显示:(1)各个性状在居群内和居群间均存在较大的变异(CV>12%)。其中千山(QS),曾家镇(ZJ)和互助(HZ)3个居群表现出了较高的变异(CV>20%),而球果干重(CDW)和种子长(CL)是所有表型性状中变异幅度最大的(CV分别为31%和21%),但种翅性状与其他性状相比具有较高的稳定性。(2)巢式设计方差分析表明,在居群内表型分化系数(Vst)变化在3.18%~89.86%之间,而群体间的Vst为38.97%;与其他针叶树种相比,油松拥有较高的表型分化系数,且居群内的变异程度远高于居群间的变异,尤其是千山(QS)、曾家镇(ZJ)和互助(HZ)3个居群,这说明油松具有较高的环境异质性适应能力或恶劣环境耐受能力。(3)相关性分析表明,该研究的各形态特征与潜在蒸发量均为负相关,且大部分形态指标间及它们与潜在蒸发量间存在显著相关性,表明潜在蒸发量是油松形态特征变化的最重要环境影响因子,预示油松最适宜生长于温暖潮湿的环境中;并表明因各形态特征间相互紧密关联,所以它们受环境条件影响而共变。  相似文献   

6.
蒙古冰草外稃微形态特征的变异式样   总被引:1,自引:1,他引:0  
解新明  云锦凤  高艳春  卢小良  李秉滔 《植物研究》2002,22(2):168-172,T002,T005
采用电镜扫描技术对蒙古冰草(Agropyron mongolicum Keng)6个天然居群和2个栽培品种的外稃进行了观察分析。结果表明,外稃的微形态特征存在有14种变异类型,具有丰富的多态性;从这些变异的分布格局来看,主要存在于居群内的个体间,居群间的分化并不明显,反映出了居群内变异大于居群间变异的特点。  相似文献   

7.
为掌握山丹居群在孢粉学方面的遗传多样性,在扫描电子显微镜下对25个居群的山丹花粉进行了形态观察,结果表明:山丹花粉粒形态为单花粉粒,极面观为椭圆体,具单萌发沟。不同居群的花粉粒在大小、网眼直径、萌发沟宽、P/E值和外壁纹饰等方面存在不同程度的差异,且居群间花粉性状的变异大于居群内的变异,最大变异系数达25.52%。  相似文献   

8.
独叶草叶片性状表型多样性研究   总被引:4,自引:0,他引:4  
刘晓  岳明  任毅 《西北植物学报》2011,31(5):950-957
独叶草是特产于中国的一种珍稀濒危植物.为研究独叶草自然居群的叶片形态变异特征及影响因素,选取分布于陕西、四川、甘肃的9个自然居群,对独叶草叶片的叶面积、叶柄长、总齿数、末级叶脉数、盲脉数、网结脉数等指标进行统计分析.结果表明:(1)独叶草叶片各属性间存在显著相关性,个别性状表现出与地理位置的相关性.(2)主成分分析显示独叶草的末级叶脉数、叶面积、总齿数对变异有较大贡献,而网结脉贡献很小.(3)独叶草叶片性状居群间变异程度大于居群内,其中盲脉数量在各个居群间变异程度最大,而末级叶脉数为最稳定的性状.(4)将本研究中形态变异结果与前期的遗传分析结果对比分析认为独叶草形态变异主要来自生态环境,而非遗传组成.(5)独叶草居群的形态及遗传变异聚类结果都显示独叶草形态变异并不具有地理格局规律,可能由于地质历史变化打断了独叶草原本连续的分布区,遗传保守性使其仍然保持分布区断裂前的遗传特性,但其表型随着生境的变化表现出可塑性.  相似文献   

9.
濒危植物金花茶果实、种子形态分化   总被引:5,自引:1,他引:5  
对濒危植物金花茶5个天然居群和1个人工居群的果实、种子形态进行了研究.结果表明:6个金花茶居群按果实、种子大小进行排序为:广西植物所(GXIB)>那子山中海拔2(NZSH2)>大王江(DWJ)>庚毛山(GMSH)>那子山高海拔3(NZSH3)>那子山低海拔1(NZSHI);表型性状在居群内和居群间均存在一定程度的变异,不同形态性状在居群间变异系数的平均值从0.429(种子质量/果,SWPF)到0.069(果实整体形态,FT/FD),果实整体形态最为稳定,各居群形态性状变异系数的平均值从0.287(NZSH3)到0.155(GXIB)不等;在调查的15个性状中,果实直径、果实质量等3个性状在居群间的差异达到显著水平(P<0.05),种长、种宽等7个性状在居群间的差异达极显著水平(P<0.01),多数居群已产生较明显的形态分化;聚类分析结果表明,在居群水平上,形态分化并不与居群间的地理距离远近相关联.影响果实、种子表型性状变异的主导因子为海拔高度、土壤有机质、土壤含水量和乔木层透光率.  相似文献   

10.
金则新  顾婧婧  李钧敏 《生态学报》2012,32(12):3849-3858
比较了濒危植物夏蜡梅(Sinocalycanthus chinensis)大明山、大雷山、龙须山3个居群的果实与种子的形态变异,采用ISSR分子标记技术分析DNA序列的变异,综合评价夏蜡梅3个居群的遗传变异。结果如下:果实性状中,果柄长、果实长、果实重、每果种子数等指标均以大明山居群最大、大雷山居群次之、龙须山居群最小,它们之间差异显著(P<0.05)。种子重、种子长、种子宽、种子厚等指标均以大雷山居群最大,与大明山居群和龙须山居群差异显著(P<0.05)。基于果实形态特征的表型分化系数(VST)在0.5518—0.9750之间,平均为0.8930,所有果实形态指标的变异大部分存在于居群间。基于种子形态特征的VST在0.1669—0.8678之间,平均为0.6240,除种子长外,其他种子形态指标的变异也大部分存在于居群间。ISSR分析表明,3个居群的多态位点百分率、Shannon信息指数、Nei基因多样性均是大明山居群最高、龙须山居群次之、大雷山居群最低。居群间的遗传分化系数(GST)为0.6050。基于ISSR分子标记数据的聚类结果显示大明山居群先与龙须山居群聚在一起,再与大雷山居群相聚,这与基于种子性状特征的聚类结果相似,而与基于果实性状特征的聚类结果不同。3个居群的种子形态特征变异系数与遗传多样性水平具有显著的正相关,且基于果实形态特征估算的VST要高于GST,而基于种子形态特征估算的VST仅略高于GST,表明夏蜡梅不同居群间的种子形态变异主要由遗传变异所造成的,而环境因子在果实形态变异中起了重要作用。Mantel检验显示3个居群基于分子标记数据的遗传距离矩阵和基于果实及种子形态特征的欧氏距离矩阵之间的相关性不显著,表明果实与种子在居群间出现的表型分化除了受遗传因素影响外,还受到其它环境因子的强烈影响。  相似文献   

11.
BACKGROUND AND AIMS: Plant roots' growth direction has important implications for plant development and survival; moreover it plays an effective and vital role in stabilizing weathered soil on a steep slope. The aim of this work was to assess the influence of slope on the architecture of woody root systems. METHODS: Five mature, single-stemmed Quercus pubescens trees growing on a steep slope and five on a shallow slope were excavated to a root diameter of 1 cm. A very precise numeric representation of the geometry and topology of structural root architecture was gained using a low-magnetic-field digitizing device (Fastrak, Polhemus). Several characteristics of root architecture were extracted by macros, including root volume, diameter, length, number, spatial position and branching order. KEY RESULTS: The diameter at breast height (dbh) was the best predictor of the root volume but had no correlation with length and number of roots. The slope affected the root volume for each branching order, and the basal cross-sectional area (CSA), number and length of the first-order roots. Number and length of the second- and third-order laterals were closely related in both conditions, although this relationship was closer in the shallow trees, suggesting the influence of a genetic control. Sloping trees showed a clustering tendency of the first- and second-order lateral roots in the up-slope direction, suggesting that the laterals rather than the taproots provide much of the anchorage. In a steep-slope condition, the taproot tapering was positively correlated with the asymmetry magnitude of first-order roots, indicating compensation between taproot and main lateral roots' clustering tendency. CONCLUSIONS: These results suggest that on a slope, on clayey soils, root asymmetry appears to be a consequence of several environmental factors such as inclination, shallow-slides and soil compactness. In addition, this adaptive growth seems to counteract the turning moment induced by the self-loading forces acting in slope conditions, and as a consequence improves the tree stability.  相似文献   

12.
A system was designed, constructed, tested, and used to growBrassica rapa L. seedling roots which were exposed to O2 concentrations from 0 to 0.21 mol mol−1, water potentials from 0 to −80 kPa, temperatures from 10 to 34°C, and mechanical impedance from 0 to 20.8 kPa. The experimental design was a central composite rotatable design with seven replications of the center point. Measurements were taken of taproot length, taproot diameter at the point of initiation of root hairs (diameter 1), and one cm above the first measurement (diameter 2), and total length and number of first-order laterals. Temperature had the greatest effect on seedling root growth, with linear and quadratic temperature effects significant for all root measurements except taproot diameter 2 which just had a significant linear effect. Water potential had a significant linear effect on lateral length and number of laterals and a significant quadratic effect on taproot diameter 1. Mechanical impedance had a significant effect only on taproot diameter 2. Oxygen was not significant for any root measurement. The mechanical impedance by water potential interaction was significant for taproot length and taproot diameter 1. A temperature optimum was found for taproot length, taproot diameter 1, lateral length, and lateral number, at 26.0, 42.5, 26.5, and 26.4°C, respectively. Taproot diameter 1 had a water potential optimum at −36.5 kPa, whereas taproot diameter 2 had a mechanical impedance optimum at 12.5 kPa. A growth cell designed for this study allows independent control of soil strength, water potential, oxygen concentration, and temperature. Thus, the cell provides the capability which was demonstrated forBrassica rapa L. to grow seedling roots under complete control of the soil physical properties.  相似文献   

13.
Thick roots elongate faster than thinner ones. However, within one species, the growth achieved by roots of a given diameter can be very variable, and root diameter can only be considered as a determinant of root potential elongation rate. As root elongation is highly correlated to carbon availability, it can be hypothesized that local competition for resources, expressed as the number of lateral roots per unit length (i.e. the branching density), modulates root elongation. Using novel methods in field conditions, we have estimated apical diameters, elongation rates and growth durations of nearly 3500 banana lateral roots, in a field experiment with high radiations and a shaded glasshouse experiment with low radiations. Apical diameters and branching densities were lower in the experiment with low radiation, but elongation rates were higher. In both experiments, mean elongation rates of first-order laterals and thick second-order laterals were negatively correlated with bearing root branching densities. It is hypothesized that, even though apical diameters were lower, low branching densities in the shaded glasshouse allowed enhanced lateral root elongation. In both experiments, second-order laterals elongated more slowly than first-order laterals of similar diameter. A specific effect of root order, independent of branching density and apical diameter, contributed to explain these slow second-order lateral elongation rates. Most lateral roots elongated between 9 and 21 days and growth duration was mainly correlated with root diameter.  相似文献   

14.
研究了5 年生钟萼木幼树株高、地径连年生长、侧枝分生特性。结果表明,调查群体5 年生株高、地径平均值、最大值与最小值分别为2.0 m、3.4 m、0.5 m 和3.2 cm、9.5 cm、0.5 cm;群体幼树株高、地径生长分布遵循正态分布;幼树群体的株高、地径生长在早期表现显著的遗传分化。1~5 年生幼树的株高、地径年生长量表现为:株高在前3 年表现较低生长量,第4、5 年明显加快;地径在第1 年生长量占比较大。幼树株高小于2.0 m 的个体未发现分生侧枝,冠幅小且高生长较缓慢。  相似文献   

15.

Background and aims

Intra-specific variation in root system architecture and consequent efficiency of resource capture by major crops has received recent attention. The aim of this study was to assess variability in a number of root traits among wild genotypes of narrow-leafed lupin (Lupinus angustifolius L.), to provide a basis for modelling of root structure.

Methods

A subset of 111 genotypes of L. angustifolius was selected from a large germplasm pool based on similarity matrices calculated using Diversity Array Technology markers. Plants were grown for 6?weeks in the established semi-hydroponic phenotyping systems to measure the fine-scale features of the root systems.

Results

Root morphology of wild L. angustifolius was primarily dominated by the taproot and first-order branches, with the presence of densely or sparsely distributed second-order branches in the late growth stage. Large variation in most root traits was identified among the tested genotypes. Total root length, branch length and branch number in the entire root system and in the upper roots were the most varied traits (coefficient of variation CV >0.50). Over 94% of the root system architectural variation determined from the principal components analysis was captured by six components (eigenvalue >1). Five relatively homogeneous groups of genotypes with distinguished patterns of root architecture were separated by k-means clustering analysis.

Conclusions

Variability in the fine-scale features of root systems such as branching behaviour and taproot growth rates provides a basis for modelling root system structure, which is a promising path for selecting desirable root traits in breeding and domestication of wild and exotic resources of L. angustifolius for stressful or poor soil environments.  相似文献   

16.
The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) L?ve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.  相似文献   

17.
Tajima R  Abe J  Lee ON  Morita S  Lux A 《Annals of botany》2008,101(4):491-499

Background and Aims

Basic information about the root and root nodule structure of leguminous crop plants is incomplete, with many aspects remaining unresolved. Peanut (Arachis hypogaea) forms root nodules in a unique process. Structures of various peanut root types were studied with emphasis on insufficiently characterized lateral roots, changes in roots during their ontogenesis and root modification by nodule formation.

Methods

Peanut plants were grown in the field, in vermiculite or in filter paper. The taproot, first-order and second-order lateral roots and root nodules were analysed using bright-field and fluorescence microscopy with hand sections and resin sections.

Key Results

Three root categories were recognized. The primary seminal root was thick, exhibiting early and intensive secondary thickening mainly on its base. It was tetrarch and contained broad pith. First-order lateral roots were long and thin, with limited secondary thickening; they contained no pith. Particularly different were second- and higher-order lateral roots, which were anatomically simple and thin, with little or no secondary growth. Unusual wall ingrowths were visible in the cells of the central part of the cortex in the first-order and second-order lateral roots. The nodule body was formed at the junction of the primary and lateral roots by the activity of proliferating cells derived originally from the pericycle.

Conclusions

Two morphologically and anatomically distinct types of lateral roots were recognized: long, first-order lateral roots, forming the skeleton of the root system, and thin and short second- and higher-order lateral roots, with an incomplete second state of endodermal development, which might be classified as peanut ‘feeder roots’. Formation of root nodules at the base of the lateral roots was the result of proliferating cell divisions derived originally from the pericycle.Key words: Endodermis, lateral root structure, nodule structure, peanut, Arachis hypogaea, primary root structure  相似文献   

18.
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L?1) and auxin (10?8 mol L?1 NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.  相似文献   

19.
水曲柳和落叶松不同根序之间细根直径的变异研究   总被引:14,自引:3,他引:14       下载免费PDF全文
细根直径大小和根序高低对细根寿命和周转估计具有重要的影响,研究不同根序之间的直径变异对认识细根直径与根序的关系具有重要意义。该文根据Pregitzer等(2002)提供的方法,研究了位于东北林业大学帽儿山实验林场尖砬沟森林培育实验站17年生水曲柳(Fraxinus mandshurica)和落叶松(Larix gmelinii)人工林细根1~5级根序的平均直径的变化、直径的最小值和最大值范围、直径的变异系数。结果表明,水曲柳和落叶松细根直径<2 mm时,包含5个根序,随着根序由小到大的增加,细根直径也在增大。各根序平均直径之间,存在较大的差异。在同一根序内,细根直径范围很大,水曲柳和落叶松一级根最小直径均<0.20 mm,最大直径分别<0.50 mm(水曲柳)和<0.70 mm(落叶松)左右。2~3级根序直径最小值在0.20~0.30 mm之间,最大值≤1.0 mm。5级根直径最小值<1.0 mm,最大值超过2.0 mm。随着根序等级增加,直径变异系数增大。一级根序的直径平均变异系数<10%,2~3级根序直径平均变异系数在10%~15%左右,4~5级根序直径的平均变异系数在20%~30%之间。因此,在细根寿命与周转研究过程中,必须同时考虑直径和根序对细根的寿命估计的影响。  相似文献   

20.
Size structure of current-year shoots in mature crowns   总被引:1,自引:0,他引:1  
Suzuki M 《Annals of botany》2003,92(3):339-347
Characteristics of current-year shoot populations were examined for three mature trees of each of three deciduous broad-leaved species. For first-order branches (branches emerging from the vertical trunk) of the trees examined, lengths or diameters of all current-year shoots were measured. Total leaf mass and total current-year stem mass of first-order branches were estimated using an allometric relationship between leaf or stem mass and length or diameter of current-year stems. For each tree, the number of current-year shoots on a first-order branch was proportional to the basal stem cross-sectional area of the branch. On the other hand, first-order branches had shoot populations with size structures similar to each other. As a result, the leaf mass of a first-order branch was proportional to the basal stem cross-sectional area of the branch, being compatible with the pipe-model relationship. All current-year shoot populations had positively skewed size structures. Because small shoots have a larger ratio of leaf mass to stem mass than large shoots, first-order branches had an extremely large ratio of leaf mass to current-year stem mass. This biased mass allocation will reduce costs for current stem production, respiration and future radial growth, and is beneficial to mature trees with a huge accumulation of non- photosynthetic organs. The allometric relationships between leaf mass and basal stem diameter and that between leaf mass and current-year stem mass of first-order branches were each similar across the trees examined. Characteristics of shoot populations tended to offset inter-species diversity of shoot allometry so that branch allometry shows inter-species convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号