首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF). LIF starvation leads to apoptosis of some of the ES-derived differentiated cells, together with p38alpha mitogen-activated protein kinase (MAPK) activation. Apoptosis, but not morphological cell differentiation, is blocked by a p38 inhibitor, PD169316. To further understand the mechanism of action of this compound, we have identified its specific targets by microarray studies. We report on the global expression profiles of genes expressed at 3 days upon LIF withdrawal (d3) compared to pluripotent cells and of genes whose expression is modulated at d3 under anti-apoptotic conditions. We showed that at d3 without LIF cells express, earlier than anticipated, specialized cell markers and that when the apoptotic process was impaired, expression of differentiation markers was altered. In addition, functional tests revealed properties of anti-apoptotic proteins not to alter cell pluripotency and a novel role for metallothionein 1 gene, which prevents apoptosis of early differentiated cells.  相似文献   

2.
Mouse embryonic stem (ES) cells remain pluripotent in vitro when grown in the presence of leukemia inhibitory factor (LIF) cytokine. LIF starvation leads to cell commitment, and part of the ES-derived differentiated cells die by apoptosis together with caspase3-cleavage and p38alpha activation. Inhibition of p38 activity by chemical compounds (PD169316 and SB203580), along with LIF withdrawal, leads to different outcomes on cell apoptosis, giving the opportunity to study the influence of apoptosis on cell differentiation. By gene profiling studies on ES-derived differentiated cells treated or not with these inhibitors, we have characterized the common and specific set of genes modulated by each inhibitor. We have also identified key genes that might account for their different survival effects. In addition, we have demonstrated that some genes, similarly regulated by both inhibitors (upregulated as Bcl2, Id2, Cd24a or downregulated as Nodal), are bona fide p38alpha targets involved in neurogenesis and found a correlation with their expression profiles and the onset of neuronal differentiation triggered upon retinoic acid treatment. We also showed, in an embryoid body differentiation protocol, that overexpression of EGFP (enhanced green fluorescent protein)-BCL2 fusion protein and repression of p38alpha are essential to increase formation of TUJ1-positive neuronal cell networks along with an increase in Map2-expressing cells.  相似文献   

3.
Photodynamic therapy (PDT) with a recently developed photosensitizer Zn‐BC‐AM was found to effectively induce apoptosis in a well‐differentiated nasopharyngeal carcinoma (NPC) HK‐1 cell line. Sustained activation of p38 mitogen‐activated protein kinase (MAPK) and c‐jun N‐terminal kinase (JNK) as well as a transient increase in activation of extracellular signal‐regulated kinase (ERK) were observed immediately after Zn‐BC‐AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT‐induced apoptosis of HK‐1 cells. PD169316 also prevented the loss of Bcl‐2 and Bcl‐xL in PDT‐treated HK‐1 cells. However, inhibition of JNK with SP600125 had no effect on Zn‐BC‐AM PDT‐induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn‐BC‐AM PDT‐induced apoptosis. Further study showed that knockdown of the p38β isoform with siRNA also increased Zn‐BC‐AM PDT‐induced apoptosis, indicating that the anti‐apoptotic effect of PD169316 in PDT‐treated HK‐1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38β and ERK may enhance the therapeutic efficacy of Zn‐BC‐AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we elucidate signaling pathways induced by photodynamic therapy (PDT) with hypericin. We show that PDT rapidly activates JNK1 while irreversibly inhibiting ERK2 in several cancer cell lines. In HeLa cells, sustained PDT-induced JNK1 and p38 mitogen-activated protein kinase (MAPK) activations overlap the activation of a DEVD-directed caspase activity, poly(ADP-ribose) polymerase (PARP) cleavage, and the onset of apoptosis. The caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (zDEVD-fmk) protect cells against apoptosis and inhibit DEVD-specific caspase activity and PARP cleavage without affecting JNK1 and p38 MAPK activations. Conversely, stable overexpression of CrmA, the serpin-like inhibitor of caspase-1 and caspase-8, has no effect on PDT-induced PARP cleavage, apoptosis, or JNK1/p38 activations. Cell transfection with the dominant negative inhibitors of the c-Jun N-terminal kinase (JNK) pathway, SEK-AL and TAM-67, or pretreatment with the p38 MAPK inhibitor PD169316 enhances PDT-induced apoptosis. A similar increase in PDT-induced apoptosis was observed by expression of the dual specificity phosphatase MKP-1. The simultaneous inhibition of both stress kinases by pretreating cells with PD169316 after transfection with either TAM-67 or SEK-AL produces a more pronounced sensitizing effect. Cell pretreatment with the p38 inhibitor PD169316 causes faster kinetics of DEVD-caspase activation and PARP cleavage and strongly oversensitizes the cells to apoptosis following PDT. These observations indicate that the JNK1 and p38 MAPK pathways play an important role in cellular resistance against PDT-induced apoptosis with hypericin.  相似文献   

5.
We evaluated the contribution of p38 mitogen-activated protein kinase and the events upstream/downstream of p38 leading to dopaminergic neuronal death. We utilized MN9D cells and primary cultures of mesencephalic neurons treated with 6-hydroxydopamine. Phosphorylation of p38 preceded apoptosis and was sustained in 6-hydroxydopamine-treated MN9D cells. Co-treatment with PD169316 (an inhibitor of p38) or expression of a dominant negative p38 was neuroprotective in death induced by 6-hydroxydopamine. The superoxide dismutase mimetic and the nitric oxide chelator blocked 6-hydroxydopamine-induced phosphorylation of p38, suggesting a role for superoxide anion and nitric oxide in eliciting a neurotoxic signal by activating p38. Following 6-hydroxydopamine treatment, inhibition of p38 prevented both caspase-8- and -9-mediated apoptotic pathways as well as generation of truncated Bid. Consequently, 6-hydroxydopamine-induced cell death was rescued by blockading activation of caspase-8 and -9. In primary cultures of mesencephalic neurons, the phosphorylation of p38 similarly appeared in tyrosine hydroxylase-positive, dopaminergic neurons after 6-hydroxydopamine treatment. This neurotoxin-induced phosphorylation of p38 was inhibited in the presence of superoxide dismutase mimetic or nitric oxide chelator. Co-treatment with PD169316 deterred 6-hydroxydopamine-induced loss of dopaminergic neurons and activation of caspase-3 in these neurons. Furthermore, inhibition of caspase-8 and -9 significantly rescued 6-hydroxydopamine-induced loss of dopaminergic neurons. Taken together, our data suggest that superoxide anion and nitric oxide induced by 6-hydroxydopamine initiate the p38 signal pathway leading to activation of both mitochondrial and extramitochondrial apoptotic pathways in our culture models of Parkinson's disease.  相似文献   

6.
7.
The stress-activated protein kinases c-Jun-activated kinase (JNK) and p38 are implicated in neuronal apoptosis. Early studies in cell lines suggested a requirement for both in the apoptosis induced by withdrawal of nerve growth factor. However, studies in neuronal cells typically implicate JNK but not p38 in apoptosis. In some cases, p38 is implicated, but the role of JNK is undefined. It remains unclear whether p38 and JNK have differing roles dependent on cell type, apoptotic stimulus, or mechanism of cell death or whether they are redundant and each sufficient to induce identical forms of cell death. We investigate the relative roles of these protein kinases in different death mechanisms in a single system, cultured cerebellar granule neurons. Apoptosis induced by withdrawal of trophic support and glutamate are mechanistically different in terms of caspase activation, DNA fragmentation profile, chromatin morphology, and dependence on de novo gene expression. Caspase-independent apoptosis induced by glutamate is accompanied by strong activation of p38, and dominant negatives and inhibitors of the p38 pathway prevent this apoptosis. In contrast, withdrawal of trophic support induces caspase-dependent death accompanied by JNK-dependent phosphorylation of c-Jun, and inhibition of JNK is sufficient to prevent the death induced by withdrawal of trophic support. Inhibition of p38 does not block withdrawal of trophic support-induced death, nor does inhibition of JNK block glutamate-induced death. We propose that mechanistically different forms of apoptosis have differing requirements for p38 and JNK activities in neurons and demonstrate that only inhibition of the appropriate kinase will prevent neurons from undergoing apoptosis.  相似文献   

8.
The mitogen-activated protein kinase (MAPK) cascades are thought to be important mediators in the transduction of extracellular signals into cellular responses. The p38 kinase, a member of the MAPK superfamily, is activated by a wide variety of extracellular stimuli and has been implicated in neuronal apoptosis induced by glutamate. In this study we have examined the role of p38 kinase in the potassium deprivation model of apoptosis in rat cerebellar granule neurons (CGN). An increase in p38 kinase activity was observed with a 15-minute potassium deprivation when compared to the basal level. We also found that SB203580 and PD169316, specific p38 kinase inhibitors, significantly attenuated apoptosis in potassium-deprived cells in a dose dependent manner. A decrease in caspase-3 mediated DEVD-MCA, substrate hydrolysis and the appearance of the 120 kDa-spectrin breakdown product in cells treated with SB203580 further suggests that the p38 kinase acts upstream of caspase-3 in the apoptosis cascade. The data provides evidence for an essential role of p38 kinase in mediating apoptotic cell death in CGN and the inhibition of p38 kinase mimics the suppression of apoptosis provided by natural survival signals.  相似文献   

9.
On binding to its receptor, transforming growth factor beta (TGFbeta) induces apoptosis in a variety of cells, including human B lymphocytes. We have previously reported that TGFbeta-mediated apoptosis is caspase-dependent and associated with activation of caspase-3. We show here that caspase-8 inhibitors strongly decrease TGFbeta-mediated apoptosis in BL41 Burkitt's lymphoma cells. These inhibitors act upstream of the mitochondria because they inhibited the loss of mitochondrial membrane potential observed in TGFbeta-treated cells. TGFbeta induced caspase-8 activation in these cells as shown by the cleavage of specific substrates, including Bid, and the appearance of cleaved fragments of caspase-8. Our data show that TGFbeta induces an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and caspase-9 and -3 activation. Caspase-8 activation was Fas-associated death domain protein (FADD)-independent because cells expressing a dominant negative mutant of FADD were still sensitive to TGFbeta-induced caspase-8 activation and apoptosis. This FADD-independent pathway of caspase-8 activation is regulated by p38. Indeed, TGFbeta-induced activation of p38 and two different inhibitors specific for this mitogen-activated protein kinase pathway (SB203580 and PD169316) prevented TGFbeta-mediated caspase-8 activation as well as the loss of mitochondrial membrane potential and apoptosis. Overall, our data show that p38 activation by TGFbeta induced an apoptotic pathway via FADD-independent activation of caspase-8.  相似文献   

10.
We previously reported that the cross-linking of cluster of differentiation (CD)24 induces apoptosis in Burkitt's lymphoma cells and that this phenomenon can be enhanced by a B cell Ag receptor (BCR)-mediated signal. In this study, we extend our previous observation and report that CD24 also mediated apoptosis in human precursor-B acute lymphoblastic leukemia cell lines in the pro-B and pre-B stages accompanying activation of multiple caspases. Interestingly, simultaneous cross-linking of pre-BCR clearly inhibited CD24-mediated apoptosis in pre-B cells. We also observed that mitogen-activated protein kinases (MAPKs) were involved in the regulation of this apoptotic process. Pre-BCR cross-linking induced prompt and strong activation of extracellular signal-regulated kinase 1, whereas CD24 cross-linking induced the sustained activation of p38 MAPK, following weak extracellular signal-regulated kinase 1 activation. SC68376, a specific inhibitor of p38 MAPK, inhibited apoptosis induction by CD24 cross-linking, whereas anisomycin, an activator of p38 MAPK, enhanced the apoptosis. In addition, PD98059, a specific inhibitor of MEK-1, enhanced apoptosis induction by CD24 cross-linking and reduced the antiapoptotic effects of pre-BCR cross-linking. Collectively, whether pre-B cells survive or die may be determined by the magnitude of MAPK activation, which is regulated by cell surface molecules. Our findings should be important to understanding the role of CD24-mediated cell signaling in early B cell development.  相似文献   

11.
12.
13.
We examined the possibility that p38 mitogen-activated protein kinase and caspase-3 would be activated for execution of apoptosis and excitotoxicity, the two major types of neuronal death underlying hypoxicischemic and neurodegenerative diseases. Mouse cortical cell cultures underwent widespread neuronal apoptosis 24 h following exposure to 10-30 nM calyculin A, a selective inhibitor of Ser/Thr phosphatase I and IIA. Activity of p38 was increased 2-4 h following exposure to 30 nM calyculin A. Addition of 3-10 microM PD169316, a selective p38 inhibitor, partially attenuated calyculin A neurotoxicity. Activity of caspase-3-like proteases was increased in cortical cell cultures exposed to 30 nM calyculin A for 8-16 h as shown by cleavage of DEVD-p-nitroanilide and phosphorylated tau. Proteolysis of tau was completely blocked by addition of 100 microM N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk), a broad-spectrum inhibitor of caspases, but incompletely by 10 microM PD169316. Calyculin A neurotoxicity was partially sensitive to 100 microM z-VAD-fmk. Cotreatment with 10 microM PD169316 and 100 microM z-VAD-fmk showed additive neuroprotection against calyculin A. Neither PD169316 nor z-VAD-fmk showed a beneficial effect against excitotoxic neuronal necrosis induced by exposure to 20 microM NMDA. Thus, caspase-3-like proteases and p38 likely contribute to calyculin A-induced neuronal apoptosis but not NMDA-induced neuronal necrosis.  相似文献   

14.
15.
16.
Osteoclasts are multinucleated cells that differentiate from hematopoietic cells and possess characteristics responsible for bone resorption. To study the involvement of mitogen-activated protein kinases (MAPKs) in osteoclastogenesis of the murine monocytic cell line RAW264.7, which can differentiate into osteoclast-like cells in the presence of the receptor activator of nuclear factor kappa B ligand (RANKL), we treated the cells with specific inhibitors of p38 MAPK, PD169316 and SB203580, and specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK), U0126 and PD98059. Each inhibitor blocked differentiation into osteoclast-like cells when the cells were plated at the standard cell density (2000-4000 cells per well (96-well)). However, the effect of MEK inhibitors on osteoclastogenesis varied according to the initial cell density during culture, because cell growth was clearly inhibited by them. When the cells were plated at more than 8000 cells per well, marked enhancement and acceleration of the differentiation were observed. In addition, immunoblot analysis revealed that phosphorylation of ERK was increased by treatment with the p38 inhibitors, whereas the MEK inhibitors increased phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteoclastogenesis is regulated under a balance between ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteoclastogenesis while the p38 pathway does so positively. This is the first report that an inhibitor of signal transduction enhanced osteoclastogenesis.  相似文献   

17.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

18.
Bax inhibitor-1 (BI-1), a member of the BI-1 family of integral membrane proteins, was originally identified as an inhibitor of stress-induced cell death in mammalian cells. Previous studies have shown that the withdrawal of leukemia inhibitory factor (LIF) results in differentiation of the majority of mouse embryonic stem (mES) cells into various cell lineages, while some ES cells die within 3days. Thus, to investigate the function of BI-1 in ES cell survival and neuronal differentiation, we generated mES cell lines that overexpress BI-1 or a carboxy-terminal BI-1ΔC mutant. Overexpression of BI-1 in mES cells significantly increased cell viability and resistance to apoptosis induced by LIF withdrawal, while the control vector or BI-1ΔC-overexpressing mES cells had no effect. Moreover, overexpression of BI-1 produced significant inhibition of the p38 mitogen-activated protein kinases (MAPK) pathway in response to LIF withdrawal, while activity of the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) MAPK pathway was increased. Interestingly, we found that BI-1-overexpressing cells showed higher expression levels of neuroectodermal markers (Otx1, Lmx1b, En1, Pax2, Wnt1, Sox1, and Nestin) and greater neuronal differentiation efficiency than control or BI-1ΔC-overexpressing mES cells did. Considering these findings, our results indicated that BI-1-modulated MAPK activity plays a key role in protecting mES cells from LIF-withdrawal-induced apoptosis and in promoting their differentiation toward neuronal lineages.  相似文献   

19.
Nanomolar concentrations of human amylin promote death of RINm5F cells in a time- and concentrationdependent manner. Morphological changes of chromatin integrity suggest that cells are predominantly undergoing apoptosis. Human amylin induces significant activation of caspase-3 and strong and sustained phosphorylation of stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38, that precedes cell death. Extracellular signal-regulated kinase (ERK) activation was not concomitant with JNK and/or p38 activation. Activation of caspase-3 and mitogen-activated protein kinases (MAPKs) was detected by Western blot analysis. Addition of the MEK1 inhibitor PD 98059 had no effect on amylin-induced apoptosis, suggesting that ERK activation does not play a role in this apoptotic scenario. A correlative inhibition of JNK activation by the immunosuppressive drug FK506, as well as a selective inhibition of p38 MAPK activation by SB 203580, significantly suppressed procaspase-3 processing and the extent of amylin-induced cell death. Moreover, simultaneous pretreatment with both FK506 and SB 203580, or with the caspase-3 inhibitor Ac-DEVD-CHO alone, almost completely abolished procaspase-3 processing and cell death. Thus, our results suggest that amylin-induced apoptosis proceeds through sustained activation of JNK and p38 MAPK followed by caspase-3 activation.  相似文献   

20.
The natural product embelin has been demonstrated to possess a wide range of therapeutic properties, however, the mechanisms by which it exerts anticancer effects are not yet clear. By monitoring the molecular changes associated during early apoptotic phase, we have identified the crucial role of oxidative stress induced MAP kinase signalling as a predominant mechanism for its anticancer effects. Treatment of A549 lung cancer cells with embelin resulted in the enhancement of phospho-p38 and phospho-JNK levels as early as 4h. Pretreatment of cells with specific inhibitors of p38 (PD169316) and JNK (SP600125) abrogated embelin-induced caspase-3 activation. Studies employing embelin in the presence or absence of specific MAP kinase inhibitors indicated that the observed changes in phosphorylation levels of p38, JNK and ERK 1/2 are solely due to embelin and not because of cross-talk between MAP kinases. Reactive oxygen species (ROS) play a crucial role in embelin induced alterations in MAP kinase phosphorylation and apoptosis as pretreatment of cells with FeTMPyP mitigated this effect. The observed changes are not due to the inhibitory effect of embelin on XIAP as cells treated with SMAC-N7-Ant peptide, a specific inhibitor of XIAP’s BIR3 domain did not mimic embelin induced apoptotic effects. The findings of the present study clearly indicate the crucial role of p38 and JNK pathways in embelin induced apoptosis and provide us with new clues for improving its therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号