首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modified Candida rugosa lipase was co-lyophilized with two gemini-type amphiphiles, l- and d-2-(3-bis-[3-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl -propionylamino)-pentanedioic acid didodecyl ester or dodecanoic acid 2-[(3-bis-[3-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl -propionyl)-(2-dodecanoyloxy-ethyl)-amino]-ethyl ester. Enzymatic activities of the modified lipases in the transesterification between racemic 2,2-dimethyl-1,3-dioxolane-4-methanol and vinyl butyrate in cyclohexane were enhanced as much as by 37-78, 1.5–5- and 41–83-fold of magnitude relative to that of native enzyme, respectively. The lack of significant enhancement of the enzymatic activity, only in the case of the d-isomeric amphiphile-modified lipase, was considered from the topological view of the amphiphile.  相似文献   

2.
Yu H  Wu J  Ching CB 《Biotechnology letters》2004,26(8):629-633
The lipase from Candida rugosa was immobilized on three commercially available macroporous adsorptive resins for kinetic resolution of ibuprofen. One resin, CRB02, increased the enzyme activity by 50% to 0.027 g g(-1) min(-1). The deactivation constant (0.19 h(-1)) of the immobilized enzyme was half of that of the native enzyme and the enantioselectivity (E = 29.2) of the immobilized lipase was 2.2 times as much as that of the native lipase for the kinetic resolution of ibuprofen with 1-propanol in isooctane at 30 degrees C.  相似文献   

3.
Two isoforms of Candida rugosalipase B (LB1 and LB2) were purified by anionic exchange chromatography. The lipases had the same N-terminal sequence, carbohydrate content and pH and thermal stability but different pIs and significant differences in their activities against different p-nitrophenol esters and triacylglycerides.  相似文献   

4.
Growth of C. rugosa on three different culture media was analysed by laser flow cytometry to evaluate physiological growth conditions allowing effective lipase production. The highest productivity was associated with an increased proportion of cells in the G1 phase and was independent of the effect of the medium on lipase formation.  相似文献   

5.
Candida rugosa lipase (CRL) was applied in a non-solvent esterification reaction to yield twelve wax esters. All products were obtained in nearly 100% yield for 10 h at 50°C when immobilized PEG2000-activated C. rugosa lipase was added to the reaction mixture. The surfactant had also a beneficial effect on the stability of the biocatalytic preparation with 83% of its activity conserved after the seventh run of repeated batch reactions.  相似文献   

6.
The yeast Candida rugosa produces several closely related extracellular lipases that differ in their substrate specificity. Here, we report the crystal structure of the isoenzyme lipase 2 at 1.97A resolution in its closed conformation. Lipase 2 shows a 79.4% amino acid sequence identity with lipase 1 and 82.2% with lipase 3, which makes it relevant to compare these three isoenzymes. Despite this high level of sequence identity, structural comparisons reveal several amino acid changes affecting the flap (residue 69), the substrate-binding pocket (residues 127, 132 and 450) and the mouth of the hydrophobic tunnel (residues 296 and 344), which may be responsible for the different substrate specificity and catalytic properties of this group of enzymes. Also, these comparisons reveal two distinct regions in the hydrophobic tunnel: a phenylalanyl-rich region and an aliphatic-rich region. Whereas this last region is essentially identical in the three isoenzymes, the phenylalanyl content in the first one is specific for each lipase, resulting in a different environment of the catalytic triad residues, which probably tunes finely their lipase/esterase character. The greater structural similarity observed between the monomeric form of lipase 3 and lipase 2 concerning the above-mentioned key residues led us to propose a significant esterase activity for this last protein. This enzymatic activity has been confirmed with biochemical experiments using cholesteryl [1-14C]oleate as substrate. Surprisingly, lipase 2 is a more efficient esterase than lipase 3, showing a twofold specific activity against cholesteryl [1-14C]oleate in our experimental conditions. These results show that subtle amino acid changes within a highly conserved protein fold may produce protein variants endowed with new enzymatic properties.  相似文献   

7.
重组L-门冬酰胺酶工程菌的表达和PEG的化学修饰   总被引:2,自引:0,他引:2  
目的提高重组L-门冬酰胺酶(rL-ASP)工程菌的表达量,分离纯化rL-ASP并对之进行PEG化学修饰。方法将带有编码rL-ASP的基因的质粒(pKA)导入不同的宿主菌中,挑出高表达菌株,同时优化发酵培养基,分离纯化获得的高纯度rL-ASP再用PEG进行化学修饰,SDS-PAGE检测修饰效果。结果在pH7.0的条件下,宿主菌为JMl09的工程菌pKA/JMl09酶活力最高,三角瓶振摇培养的酶活力可达216×103IU/L;发酵罐发酵培养,酶活力达312×103IU/L。纯化后的rL-ASP比活力为220IU/mg,rL-ASP经过PEG化学修饰生成rL-ASP-PEG,分子量发生改变。结论改变目标蛋白表达的宿主菌和优化发酵工艺,提高了rL-ASP的表达量,纯化的rL-ASP经过PEG化学修饰后分子量增大。  相似文献   

8.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5 h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3 h) and [omim]PF6 (10.6 h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

9.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5?h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3?h) and [omim]PF6 (10.6?h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

10.
The effect of solvent hydrophobicity on activation of Candida rugosa lipase (CRL) was investigated by performing molecular dynamics simulations for four nano seconds (ns). The closed/inactive conformer of CRL (PDB code 1TRH) was solvated in three alkane-aqueous environments. The alkanes aggregated in a predominantly aqueous environment and by 1 ns a stable spherical alkane-aqueous interface had formed. This led to the interfacial activation of CRL. On analyzing the simulated conformers with the closed conformer of CRL, the flap was found to have opened from a closed state by 7.7 A, 10.2 A, 13.1 A at hexane-aqueous, octane-aqueous, and decane-aqueous interfaces. Further, essential dynamics analysis revealed that major anharmonic fluctuations were confined to residues 64-81, the flap of CRL.  相似文献   

11.
Lipase from Candida rugosa (CRL) was encapsulated within a chemically inert sol-gel support in the presence of calix(aza)crowns as the new additives. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yields of the calix(aza)crown based encapsulated lipases were higher than that of the free lipase. Improved enantioselectivity was observed with the calix(aza)crown-based encapsulated lipases as compared to encapsulated free lipase. The reaction of Naproxen methyl ester resulted in 48.4% conversion for 24 h and 98% enantiomeric excess for the S-acid, corresponding to an E value of >300 (= 166 for the encapsulated free enzyme). Moreover, the encapsulated lipases were still retained about 18% of their conversion ratios after the sixth reuse in the enantioselective reaction.  相似文献   

12.
Capsaicin was hydrolysed by lipase B from Candida antarctica into vanillylamine and 8-methyl-6-trans-nonenoic acid. Conversions of 70% were obtained after 72 h at 70 °C in water but decreased to only 15% when capsaicin was solubilized in 15% (v/v) ethanol/water after 72 h at 45 °C. No activity occurred in chloroform/water mixtures. According to our knowledge, this is the first report concerning amide hydrolysis by a lipase.  相似文献   

13.
Although proteins with 2,4-bis (o-methoxypolyethylene glycol)-6-chloro-s-triazine (PEG2-Cl) as a divalent PEG modification have some advantages compared to proteins with the linear PEG modification, PEG2Cl cannot react with amino groups at neutral pH. Therefore, we have prepared new PEG2 derivatives that have an activated ester as the functional group. We confirmed that these derivatives are useful for the divalent modification of proteins, such as bSOD and rhG-CSF. © Rapid Science Ltd. 1998  相似文献   

14.
Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.  相似文献   

15.
A novel technique for immobilization of Candida rugosa lipase onto anionic colloidal gas aphrons (CGAs) is described. CGAs are spherical microbubbles (10-100 microm) composed of an inner gas core surrounded by a surfactant shell. In this initial study, greater than 80% lipase (w/w) was effectively retained on the CGAs. Leakage of protein from the CGAs and the activity of the adsorbed lipase decreased with increasing enzyme loading; this indicates that multilayers of lipase may be adsorbing onto the CGAs. The CGA-immobilised lipase displayed normal Michaelis-Menten dependence on substrate concentration and also exhibited greater activity than the free enzyme.  相似文献   

16.
Modified Candida rugosa and Pseudomonas cepacia lipase (CRL and PCL) were co-lyophilized with two pairs of synthetic diastereoisomeric amphiphiles, d- and l-2-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl-propionylamino)-pentanedioic acid didodecyl ester (d- and l-BIG2C12CA); d- and l-2-(2,3,4,5,6-pentahydroxy-hexanoylamino)-pentanedioic acid didodecyl ester (d- and l-2C12GE). Enzyme activities of the modified lipase in the transesterification in organic solvent were evaluated. Both pairs of the diastereoisomeric amphiphiles showed enhanced enzyme activity in the transacetylation between racemic sulcatol and isopropenyl acetate in diisopropyl ether, catalyzed by the PCL-co-lyophilizate, by 19–48 fold when compared to the native lipase lyophilized from buffer alone independent of the stereochemistry of the amphiphiles, while in the case of the CRL-co-lyophilizate only the l-BIG2C12CA showed enhanced enzyme activity in the transbutyrylation between racemic solketal and vinyl butyrate in cyclohexane as high as 68–78 fold.  相似文献   

17.
The activity and enantioselectivity of Candida rugosa lipase were investigated in chiral solvents, (–)-, (+)- and racemic carvone, for the resolution of 2-chloro-propionic acid with n-butanol via esterification. The activity of the enzyme studied was about 50% higher in (–)-carvone than in (+)-carvone, however the enantioselectivity was similar.  相似文献   

18.
Candida rugosa lipase was immobilized by first cross-linking with glutaraldehyde and then entrapping in calcium alginate beads. The presence of 2-propanol during cross-linking markedly improved the enzyme activity and activity recovery. Maximal enzyme activity (2.1?mmol?h?1?g?1 immobilized conjugate, wet weight) and activity recovery (117%) were observed at 30% (v/v) 2-propanol for hydrolysis of olive oil, which were 1.7 and 2.0 times higher than those of the immobilized enzyme prepared in the absence of 2-propanol. The half-life of the immobilized lipase prepared by entrapment after cross-linking in 30% 2-propanol was 1.6 times higher than that prepared by entrapment of the native lipase without cross-linking and 2-propanol pretreatment. The enantioselectivity of the former was 11 times higher than that of the latter for hydrolysis of racemic ketoprofen ethyl ester.  相似文献   

19.
Candida antarctica lipase catalyzed the aminolysis of 2-hydroxy esters with amines in organic solvents to yield the corresponding 2-hydroxy amides. The reactions proceeded at 28–30 °C in dioxane for 6 h with 3 mM substrates with yields ranging between 45% (w/w) (for branched substrates) to 88% (w/w) (for linear substrates). Although the reaction was not enantioselective, because of its simplicity it represents an alternative method for the synthesis of functionalised amides.  相似文献   

20.
海藻糖对脂肪酶的保护机理及酶失活动力学   总被引:1,自引:0,他引:1  
采用自制的磁性固定化酶(MIE),考察了高温下二糖类对酶的保护作用。结果显示:海藻糖对悬浮于水溶液中的MIE没有保护作用;而在高温干燥后,对酶的保护作用效果依次为:海藻糖>乳糖>蔗糖,支持‘玻璃态学说’;此外,采用两步失活动力学模型能够较好的拟合酶的失活过程,并且得到酶的失活速率常数k和半衰期t1/2,加入海藻糖和乳糖之后,MIE的半衰期分别增长了31和23倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号