首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chicken metallothionein (ckMT) is the paradigm for the study of metallothioneins (MTs) in the Aves class of vertebrates. Available literature data depict ckMT as a one-copy gene, encoding an MT protein highly similar to mammalian MT1. In contrast, the MT system in mammals consists of a four-member family exhibiting functional differentiation. This scenario prompted us to analyse the apparently distinct evolutionary patterns followed by MTs in birds and mammals, at both the functional and structural levels. Thus, in this work, the ckMT metal binding abilities towards Zn(II), Cd(II) and Cu(I) have been thoroughly revisited and then compared with those of the mammalian MT1 and MT4 isoforms, identified as zinc- and copper-thioneins, respectively. Interestingly, a new mechanism of MT dimerization is reported, on the basis of the coordinating capacity of the ckMT C-terminal histidine. Furthermore, an evolutionary study has been performed by means of in silico analyses of avian MT genes and proteins. The joint consideration of the functional and genomic data obtained questions the two features until now defining the avian MT system. Overall, in vivo and in vitro metal-binding results reveal that the Zn(II), Cd(II) and Cu(I) binding abilities of ckMT lay between those of mammalian MT1 and MT4, being closer to those of MT1 for the divalent metal ions but more similar to those of MT4 for Cu(I). This is consistent with a strong functional constraint operating on low-copy number genes that must cope with differentiating functional limitation. Finally, a second MT gene has been identified in silico in the chicken genome, ckMT2, exhibiting all the features to be considered an active coding region. The results presented here allow a new insight into the metal binding abilities of warm blooded vertebrate MTs and their evolutionary relationships.  相似文献   

3.
Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Deltacup1 and Deltazrc1 Deltacot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Deltacup1 mutant. The type-4 MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of Zn than other MTs to the Deltazrc1 Deltacot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 mum CuSO(4). Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.  相似文献   

4.
A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (376 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparisons establish that chicken MT shares extensive homology with mammalian MTs, but is more closely related to the MT-II than to the MT-I isoforms from various mammals. The nucleotide sequence of the coding region of chicken MT shares approximately 70% homology with the consensus sequence for the mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd2+, Zn2+, Cu2+), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.  相似文献   

5.
Analysis of type 1 metallothionein cDNAs in Vicia faba   总被引:7,自引:0,他引:7  
  相似文献   

6.
7.
Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.  相似文献   

8.
The protist Tetrahymena pigmentosa accumulates large amounts of metal ions, particularly cadmium and copper. This capability is linked to the induction of metallothioneins (MTs), cysteine-rich metal-binding proteins found in protists, plants and animals. The present study focuses on a novel inducible MT-isoform isolated from Tetrahymena after exposure to a non-toxic dose of copper. The cDNA sequence was determined utilising the partial peptide sequence of purified protein. The Cu-MT cDNA encodes 96 amino acids containing 28 cysteine residues (29%) arranged in motifs characteristic of the metal-binding regions of vertebrate and invertebrate MTs. Both the amino acid and nucleotide sequences differ, not only from other animal MTs, but also from the previously characterised Tetrahymena Cd-MT. Both MTs contain the structural pattern GTXXXCKCXXCKC, which may be proposed as a conservative sequence of Tetrahymena MTs. Cu-dependent regulation of MT expression was also investigated by measuring MT-mRNA and MT levels. MT synthesis occurs very quickly and MT contents increase with Cu accumulation. The induction of Cu-MT mRNA is very rapid, with no observable lag period, and is characterised by transient fluctuation, similar to that described for Cd-MT mRNA. The data reported here indicate that, also in the unicellular organism Tetrahymena, two very different MT isoforms, which perform different biological functions, are expressed according to the inducing metal, Cu or Cd.  相似文献   

9.
10.
11.
In this study, we examined the expression of mammalian and fish metallothioneins (MTs) in Escherichia coli as a strategy to enhance metal biosorption efficiency of bacterial biosorbents for lead (Pb), copper (Cu), cadmium (Cd), and zinc (Zn). In addition, MT proteins were expressed in either the cytoplasmic or periplasmic compartment of host cells to explore the localization effect on metal biosorption. The results showed that MT expression led to a significant increase (5-210%) in overall biosorption efficiency (eta(ads)), especially for biosorption of Cd. The MT-driven improvement in metal biosorption relied more on the increase in the biosorption rates (r(2), a kinetic property) than on the equilibrium biosorption capacities (q(max), a thermodynamic property), despite a 10-45% and 30-80% increase in q(max) of Cd and Zn, respectively. Periplasmic expression of MTs appeared to be more effective in facilitating the metal-binding ability than the cytoplasmlic MT expression. Notably, disparity of the impacts on biosorption ability was observed for the origin of MT proteins, as human MT (MT1A) was the most effective biosorption stimulator compared to MTs originating from mouse (MT1) and fish (OmMT). Moreover, the overall biosorption efficiency (eta(ads)) of the MT-expressing recombinant biosorbents was found to be adsorbate-dependent: the eta(ads) values decreased in the order of Cd > Cu > Zn > Pb.  相似文献   

12.
The levels of metallothionein (MT), a biomarker of metal exposure, and of cytosolic metals (Zn, Cu, Cd), known as MT inducers, were investigated as variables of age (1 to 8 years) and tissue mass (liver, kidney, brain) of red mullet (Mullus barbatus). Within the age from 1 to 8 years the most significant increase is evident for cytosolic Cd in liver (43-fold) and in kidney (5-fold). MT and essential metals are constant with age or slightly increased. Over the growth period, statistically significant MT and metal increase is evident only between 1 and 6-8 years old specimens, while for Cd in liver and kidney cytosol significant increase already exists at 4 years old specimens. Metal distribution in all tissues follows the order: Zn>Cu>Cd, with even 500-800 times lower Cd levels than essential metal levels. Consequently, MTs follow the levels of essential metals, Zn and Cu, indicating MT involvement in homeostasis of essential metals. In contrast to kidney and brain, hepatic MT levels are not age-dependent. Inclusion of hepatic MT measurements and the associated cytosolic metals will be useful in the assessment of long-term metal effects in demersal fish M. barbatus.  相似文献   

13.
14.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

15.
The aim of this study was to investigate the protective effect of luteolin on liver Ca, Mg, Zn, Cu, Fe, and Mn content in mice with carbon tetrachloride (CCl4)-induced hepatotoxicity. Additionally, liver metallothionein (MT) expression was studied. Luteolin was administered intraperitoneally (i.p.) as a single 5- or 50-mg/kg dose or once daily for two consecutive days, respectively. Two hours after the last injection, the mice were treated with CCl4 (20 mg/kg, i.p.). CCl4 injection reduced hepatic level of all metals except Ca, with an intense cytoplasmic staining pattern in hepatocytes located in periportal areas, indicating induction of MTs. Pretreatment with 50 mg/kg of luteolin for 2 days remarkably elevated metal content to control values (Mg and Cu) or even above them (Zn and Fe). Luteolin pretreatment increased pericentral MTs immunopositivity and histological architecture improvement in a time- and dose-dependent manner, being the most prominent in mice pretreated with 50 mg/kg for 2 days. The liver in this group showed pronounced MT expression in almost all hepatocytes throughout the liver parenchyma. In conclusion, these results suggest the protective effect of luteolin on CCl4-induced hepatotoxicity and an enhancement of hepatocyte proliferative capabilities.  相似文献   

16.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

17.
The study determined heavy metal concentrations and MT1 nucleotide sequence [phylogeny] in liver of the Kafue lechwe. Applicability of MT1 as a biomarker of pollution was assessed. cDNA-encoding sequences for lechwe MT1 were amplified by RT-PCR to characterize the sequence of MT1 which was subjected to BLAST searching at NCBI. Phylogenetic relationships were based on pairwise matrix of sequence divergences calculated by Clustal W. Phylogenetic tree was constructed by NJ method using PHILLIP program. Metals were extracted by acid digestion and concentrations of Cr, Co, Cu, Zn, Cd, Pb, and Ni were determined using an AAS. MT1 mRNA expression levels were measured by quantitative comparative real-time RT-PCR. Lechwe MT1 has a length of 183bp, which encode for MT1 proteins of 61AA, which include 20 cysteines. Nucleotide sequence of lechwe MT1 showed identity with sheep MT (97%) and cattle MT1E (97%). Phylogenetic tree revealed that lechwe MT1 was clustered with sheep MT and cattle MT1E. Cu and Ni concentrations and MT1 mRNA expression levels of lechwe from Blue Lagoon were significantly higher than those from Lochinvar (p<0.05). Concentrations of Cd and Cu, Co and Cu, Co and Pb, Ni and Cu, and Ni and Cr were positively correlated. Spearman's rank correlations also showed positive correlations between Cu and Co concentrations and MT mRNA expression. PCA further suggested that MT mRNA expression was related to Zn and Cd concentrations. Hepatic MT1 mRNA expression in lechwe can be used as biomarker of heavy metal pollution.  相似文献   

18.
Metallothioneins (MTs) were induced in Chang liver cells by the metals, Zn, Cu and Cd, and the glucocorticoid hormone, dexamethasone. When 116 microM Zn, 32 microM Cu and 18 microM Cd, and 10(-7) M dexamethasone, respectively, were administered for 9 h, MTs induced by each inducer in the cells reached maximum levels. The maximum accumulation of MT level induced by dexamethasone was the lowest of the four inducers investigated; the levels induced by Zn, Cu and Cd were 4.7, 1.2 and 1.5 times of that induced by dexamethasone. When dexamethasone was added to the cells together with the heavy metals (Zn, Cu and Cd), dexamethasone had an additive effect on the maximum MT accumulations induced by heavy metals as compared to when induction was conducted using one of heavy metals alone or by dexamethasone alone. However, dexamethasone did almost not effect the metal accumulations in the cells, although the maximum MT levels induced by heavy metal increased by dexamethasone. These results suggest that the process of MT induction by heavy metals and that by dexamethasone are independent of one another. When dexamethasone was added to the cells together with a high concentration of Cu (32 microM) induced the maximum MT accumulation, Cu transport into the cells decreased by 20-40% of that into non-treated cells, which was statistically significant.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号