首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organ size is precisely regulated during development, but the control mechanisms remain obscure. We have isolated a mutation in zebrafish, liebeskummer (lik), which causes development of hyperplastic embryonic hearts. lik encodes Reptin, a component of a DNA-stimulated ATPase complex. The mutation activates ATPase activity of Reptin complexes and causes a cell-autonomous proliferation of cardiomyocytes to begin well after progenitors have fashioned the primitive heart tube. With regard to heart growth, beta-catenin and Pontin, a DNA-stimulated ATPase that is often part of complexes with Reptin, are in the same genetic pathways. Pontin reduction phenocopies the cardiac hyperplasia of the lik mutation. Thus, the Reptin/Pontin ratio serves to regulate heart growth during development, at least in part via the beta-catenin pathway.  相似文献   

2.
3.
4.
5.
6.
7.
8.
RuvBL1 and RuvBL2, also known as Pontin and Reptin, are AAA+ proteins essential in small nucleolar ribonucloprotein biogenesis, chromatin remodelling, nonsense-mediated messenger RNA decay and telomerase assembly, among other functions. They are homologous to prokaryotic RuvB, forming single- and double-hexameric rings; however, a DNA binding domain II (DII) is inserted within the AAA+ core. Despite their biological significance, questions remain regarding their structure. Here, we report cryo-electron microscopy structures of human double-ring RuvBL1–RuvBL2 complexes at ∼15 Å resolution. Significantly, we resolve two coexisting conformations, compact and stretched, by image classification techniques. Movements in DII domains drive these conformational transitions, extending the complex and regulating the exposure of DNA binding regions. DII domains connect with the AAA+ core and bind nucleic acids, suggesting that these conformational changes could impact the regulation of RuvBL1–RuvBL2 containing complexes. These findings resolve some of the controversies in the structure of RuvBL1–RuvBL2 by revealing a mechanism that extends the complex by adjustments in DII.  相似文献   

9.
Telomerase maturation and recruitment to telomeres is regulated by several telomerase‐ and telomere‐associated proteins. Among a number of proteins, human Pontin and Reptin play critical roles in telomerase biogenesis. Here we characterized plant orthologues of Pontin and Reptin, RuvBL1 and RuvBL2a, respectively, and show association of Arabidopsis thaliana RuvBL1 (AtRuvBL1) with the catalytic subunit of telomerase (AtTERT) in the nucleolus in vivo. In contrast to mammals, interactions between AtTERT and AtRuvBL proteins in A. thaliana are not direct and they are rather mediated by one of the Arabidopsis thaliana Telomere Repeat Binding (AtTRB) proteins. We further show that plant orthologue of dyskerin, named AtCBF5, is indirectly associated with AtTRB proteins but not with the AtRuvBL proteins in the plant nucleus/nucleolus, and interacts with the Protection of telomere 1 (AtPOT1a) in the nucleolus or cytoplasmic foci. Our genome‐wide phylogenetic analyses identify orthologues in RuvBL protein family within the plant kingdom. Dysfunction of AtRuvBL genes in heterozygous T‐DNA insertion A. thaliana mutants results in reduced telomerase activity and indicate the involvement of AtRuvBL in plant telomerase biogenesis.  相似文献   

10.
11.
12.
Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 μM, 30 min) or γ irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.  相似文献   

13.
14.
15.
16.
17.
18.
Two similar proteins RuvB like1 (Rvb1/Pontin) and RuvB like2 (Rvb2/Reptin) of AAA + family of enzymes are present in yeast to human and are well known to be involved in diverse cellular activities. The human malaria parasite Plasmodium falciparum contains three different RuvB like proteins. Thus it has been of interest to explore why P. falciparum requires three RuvB like proteins and how these enzymes are biochemically regulated. In this study, we present the detailed biochemical characterization of PfRuvB2. The complex of PfRuvB3 was immunopurified and the presence of PfRuvB2 was confirmed. The in vitro interaction study shows that PfRuvB2 interacts only with PfRuvB3 but not with PfRuvB1. The recombinant as well as endogenous PfRuvB2 contains ATPase as well as weak DNA helicase activities. The presence of PfRuvB3 in the helicase reaction of PfRuvB2 increases the helicase activity significantly. Interestingly PfRuvB2/PfRuvB3 complex preferentially translocates and unwinds DNA in the 5′–3′ direction. In vivo studies showed that PfRuvB2 is expressed in all the asexual intraerythrocytic developmental stages and localizes mainly in the nucleus during merozoite, ring and trophozoite stages while during schizont stage it relocalizes partially in the nucleus and partially towards cytoplasm. As PfRuvB3 is specific to intraerythrocytic mitosis so we interpret that PfPuvB3 interacts with PfRuvB2 during schizont/intraerythrocytic mitosis and acts as its modulator mainly for the appreciable helicase activity.  相似文献   

19.
Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Based on high expression in lymphoid tissues, we examined whether Pontin has a T cell-specific function. We generated Pontinf/f;Lck-Cre mice, in which Pontin can be conditionally deleted in T cells and then explored T cell-specific function of Pontin in vivo. Here, we show that specific abrogation of Pontin expression in T cells almost completely blocked development of αβ T cells at the β-selection checkpoint by inducing cell apoptosis indicating that Pontin is essential for early T cell development. Pontin-deficient thymocytes show a comparable expression level of T cell receptor (TCR)β chain, but have enhanced activation of p53 and Notch signaling compared to wild-type thymocytes. Intriguingly, the developmental block of αβ T cells can be partially rescued by loss of p53. Together, our data demonstrate a novel role of Pontin as a crucial regulator in pre-TCR signaling during T cell development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号