首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The origin of B-1a cells, a minority population of B cells that express CD5, are abundant in coelomic cavities, and often produce autoantibodies, has been the subject of study for many years. Accumulating evidence demonstrates that the hypothesis that only B cells arising in fetal or neonatal tissues have the potential to become B-1a cells cannot be true. Rather, B cell receptor-mediated signaling initiated by ligation of autoantigen has now been shown to be required for induction of the B-1a phenotype. Furthermore, cells with a functional B-1a phenotype can be induced from adult precursors by appropriate Ag. At the same time, microenvironment-specific events may determine the likelihood that a given B cell, either adult or fetal derived, enters this pathway. CD5 expression and possibly localization to the peritoneum appear to provide some protection to autoreactive cells otherwise slated for elimination.  相似文献   

2.
Polycomb chromatin modifiers regulate hematopoietic pluripotent stem and progenitor cell self-renewal and expansion. Polycomb complex redundancy and biochemical heterogeneity complicate the unraveling of the functional contributions of distinct components. We have studied the hematopoietic activity of RYBP, a direct interactor and proposed modulator of RING1A/RING1B-dependent histone H2A monoubiquitylation (H2AUb). Using a mouse model to conditionally inactivate Rybp in adult hematopoiesis, we have found that RYBP deletion results in a reversion of B-1-to-B-2 B-cell progenitor ratios, i.e., of the innate (predominantly fetal) to acquired (mostly adult) immunity precursors. Increased numbers of B-1 progenitors correlated with a loss of pre-proB cells, the B-2 progenitors. RYBP-deficient stem and progenitor cell populations (LKS) and isolated common lymphoid progenitors (CLP) gave rise to increased numbers of B-1 progenitors in vitro. Rybp inactivation, however, did not result in changes of global H2AUb and did not interact genetically with Ring1A or Ring1B deletions. These results show that a sustained regulation of the B-1-to-B-2 switch is needed throughout adult life and that RYBP plays an important role in keeping B-2 dominance, most likely independently of its Polycomb affiliation.  相似文献   

3.
Analyses of VHDJH rearrangements isolated from murine peritoneal B-1a cells (CD5+, IgMhi, B220lo), peritoneal B-1b cells (CD5-, IgMhi, B220lo), and conventional splenic B cells provide evidence that a unique repertoire of VH regions is displayed by each of these B-cell subsets. The B-1a subset is characterized by a low N-region diversity, by a high frequency of sequence homologies in the VH-D and D-JH junctions, and by a limited exonuclease nibbling of the terminals of the joining gene segments. Through expansion in ageing mice, B-1a clones with these properties are favoured. B-1b cells are similar to conventional B-2 cells with respect to N-region diversity, but are unique in terms of D gene expression. Thus, while most murine pre-B and B cells preferentially use DSP and DFL gene segments in a given reading frame (RF1), B-1b cells frequently express D genes in another reading frame (RF2). Together, these findings provide structural evidence for a model where B-1a, B-1b and B-2 cells are produced by separate progenitors that are active at different stages of ontogeny.  相似文献   

4.
Summary The development and maturation of Langerhans cells during the differentiation of skin was studied in mice from fetal day 13 to adult using 3 indices: (1) ATPase activity; (2) ultrastructure; and (3) quantitative evaluation of the cell population.ATPase-positive Langerhans cells appeared in the epidermis at first at fetal day 16, and they increased in number in the differentiating epidermis during the late fetal period. The earliest appearance of Birbeck granules was at postnatal day 4. Cored tubules were also formed in the Langerhans cells in the dermis at around the same age. The cells containing Birbeck granules or cored tubules are considered to be mature Langerhans cells. In the Langerhans-cell lineage, those cells in the epidermis at stages earlier than postnatal day 4 and not yet containing specific organelles are considered to be immature Langerhans cells. These immature Langerhans cells can be identified ultrastructurally in the epidermis at fetal day 16, coinciding with the appearance of ATPase-positive cells. The increase in the number of immature Langerhans cells during the perinatal period was shown by quantitative analysis of nuclear density and relative Langerhans-cell area on the electron micrographs.It is concluded that ATPase is a marker of the Langerhans-cell lineage from the early development stages, while Birbeck granules and cored tubules are markers that identify mature Langerhans cells in electron micrographs.  相似文献   

5.
Ontogeny of thymic B cells and their surface characteristics were analyzed using monoclonal antibodies (mAbs) against B220 molecules (CD45, CD45R). A small number of B cells were detected in fetal thymus on Gestation Day 14 (approximately 3.5% of the low-density fraction). Similarly, the percentage of B cells in the low-density fraction was 3.2% on Gestation Day 18, and 3.5% on Day 1 after birth. These were the same level as that of adult mice. CD5+ B cells, which form the major population of thymic B cells, were also found in the fetal life (0.5% on Day 14 and 2.2% on Day 16 in the low-density cells). The percentage of CD5+ B cells in B cell-enriched fraction was about 65% on Day 1 after birth, which is the same level as that in adult mice. These results indicate that a small number of B cells or cells in the B-cell lineage are present in the fetal thymus and also suggest the importance of these thymic B cells in the negative selection of T cells during early developmental stages.  相似文献   

6.
CD5+ B cells have attracted considerable interest because of their association with self-reactivity, autoimmunity, and leukemia. In mice, CD5+ B cells are readily generated from fetal/neonatal precursors, but inefficiently from precursors in adult. One model proposed to explain this difference is that their production occurs through a distinctive developmental process, termed B-1, that enriches pre-B cells with novel germline VDJs and that requires positive selection of newly formed B cells by self-Ag. In contrast, follicular B cells are generated throughout adult life in a developmental process termed B-2, selecting VDJs that pair well with surrogate L chain, and whose maturation appears relatively independent of antigenic selection. In the present study, I focus on processes that shape the repertoire of mouse CD5+ B cells, describing the differences between B-1 and B-2 development, and propose a model encompassing both in the generation of functional B cell subpopulations.  相似文献   

7.
We have produced a transgenic mouse (PV1TgL) that can only generate B lymphocytes with an Ig receptor specific for the synthetic polymer polyvinyl pyrrolidinone. Before immunization, bone marrow B cell numbers are very low, and peripheral lymphoid organs are almost devoid of B cells, confirming the role of positive selection by Ag in the development of mature B cell populations. The predominant population of B cells in the spleens of naive adult PV1TgL mice have most of the characteristics of marginal zone B cells, including anatomical location in the peripheral areas of the splenic white pulp. After immunization, a new population of B cells appears in the spleen with the characteristics of B-1 cells. Similar cells also appear somewhat later in the peritoneal cavity. Our findings suggest that immunization with a thymus-independent Ag can lead to the appearance and expansion of Ag-reactive B-1 cells in an adult mouse.  相似文献   

8.
Alpha-Fetoprotein (AFP) is a major serum glycoprotein during embryonic and early postnatal life. A number of diverse biologic functions have been attributed to AFP, including osmotic and carrier function and immunosuppressive activity. In this study we demonstrate that AFP selectively stimulates in vitro proliferation of two distinct subsets of adult murine bone marrow cells. One population of AFP-reactive bone marrow cells expresses surface receptors for soybean agglutinin (SBA) lectin. SBA+ bone marrow cells are resistant to cytotoxic pretreatment with T-cell-specific antisera and are not retained on Ig-anti-Ig affinity columns. The absence of conventional T- and B-cell markers, coupled with the presence of SBA receptors, suggests that AFP-activated non-T bone marrow cells may belong to an immature set of B lymphocytes. A second population of AFP-responsive bone marrow cells expresses the Thy-1+ Lyt 1+2- phenotype characteristic of conventional mature adult T helper cells. The potential physiological relevance of the mitogenic effects of AFP on bone marrow cells with respect to immunoregulatory processes in the fetal/newborn environments is discussed.  相似文献   

9.
10.
11.
The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a broad-specificity nuclear hormone receptor that is well known for its role in drug and xenobiotic metabolism. SXR is activated by a wide variety of endobiotics, dietary compounds, pharmaceuticals, and xenobiotic chemicals. SXR is expressed at its highest levels in the liver and intestine yet is found in lower levels in other tissues, where its roles are less understood. We previously demonstrated that SXR(-/-) mice demonstrate elevated nuclear factor (NF)-κB activity and overexpression of NF-κB target genes and that SXR(-/-) mice develop lymphoma derived from B-1 lymphocytes in an age-dependent manner. In this work, we show that fetal livers in SXR(-/-) mice display elevated expression of NF-κB target genes and possess a significantly larger percentage of B-1 progenitor cells in the fetal liver. Furthermore, in utero activation of SXR in wild-type mice reduces the B-1 progenitor populations in the embryonic liver and reduces the size of the B-1 cell compartment in adult animals that were treated in utero. This suggests that activation of SXR during development may permanently alter the immune system of animals exposed in utero, demonstrating a novel role for SXR in the generation of B-1 cell precursors in the fetal liver. These data support our previous findings that SXR functions as a tumor suppressor in B-1 lymphocytes and establish a unique role for SXR as a modulator of developmental hematopoiesis in the liver.  相似文献   

12.
Foxn1Delta is a hypomorphic allele of the nude gene that causes arrested thymic epithelial cell differentiation and abnormal thymic architecture lacking cortical and medullary domains. T cells develop in the Foxn1Delta/Delta adult thymus to the double- and single-positive stages, but in the apparent absence of double-negative 3 (DN3) cells; however, DN3 cells are present in the fetal thymus. To investigate the origin of this seemingly contradictory phenotype, we performed an analysis of fetal and adult DN cells in these mutants. Neither adult bone marrow-derived cells nor fetal liver cells from wild-type or Rag1-/- mice were able to differentiate to the DN2 or DN3 stage in the Foxn1Delta/Delta thymus. Our data suggest that thymopoiesis in the Foxn1Delta/Delta adult thymus proceeds from CD117- atypical progenitors, while CD117+ DN1a cells are absent or blocked in their ability to differentiate to the T lineage. Wild-type cells generated by this pathway in the postnatal thymus were exported to the periphery, demonstrating that these atypical cells contributed to the peripheral T cell pool. The Foxn1Delta/Delta adult (but not fetal) thymus also preferentially supports B cell development, specifically of the B-1 type, and this phenotype correlated with reduced Notch ligand expression in the adult stroma.  相似文献   

13.
In common laboratory mouse strains, which are derived from the crossing between three subspecies, peritoneal B cells are enriched in B-1a cells characterized by the CD5(+)Mac-1(+)B220(low)IgM(high)IgD(low)CD43(+)CD9(+) phenotype. Intriguingly in other vertebrates, CD5(+)Mac-1(+) cells have never been found in a specific anatomic site. To ascertain the peculiarity of the CD5(+) peritoneal B cells in laboratory mice, we analyzed the peritoneal B cell subsets in 9 inbred and 39 outbred wild-derived mouse strains belonging to 13 different species/subspecies. We found that most of these strains do not have the CD5(+) B-1a cell population. However, all of these strains including classical laboratory mouse strains, have variable proportions of a novel B cell population: Bw, which is characterized by a unique phenotype (CD5(-)Mac-1(+)B220(high)IgM(high)IgD(high)CD43(-)CD9(-)) and is not restricted to the peritoneal cavity. Bw cells are also distinct from both B-1 and B-2 cells from a functional point of view both by proliferative responses, cytokine secretion and Ab synthesis. Moreover, transfer experiments show that bone marrow and fetal liver cells from wild mice can give rise to Bw cells in alymphoid mice. The conservation of this B cell population, but not of the CD5(+) B-1a, during evolution of the genus Mus, its readiness to respond to TLR ligands and to produce high concentration of autoantibodies suggest that Bw cells play a key role in innate immunity.  相似文献   

14.
The recovery of the B-cell population was studied in irradiated and fetal liver-reconstituted mice. Since in irradiated and reconstituted mice the B-cell population in the spleen recovers much more rapidly than in the other lymphoid organs, we assessed the role of the spleen in the recovery of the B-cell compartment in the other organs. It was found that the absence of the spleen did not delay or diminish the recovery of the immunoglobulin (Ig)-bearing (B)-cell population in the bone marrow, lymph nodes, Peyer's patches, and peripheral blood. Throughout the recovery period the number of B lymphocytes in the lymphoid organs of splenectomized mice was even greater than in the same organs of sham-operated mice. B cells obtained from the bone marrow of splenectomized, irradiated, and reconstituted mice appeared to be fully immunocompetent, as shown by their ability to cooperate with thymocytes in an adoptive plaque-forming cell response to sheep red blood cells. The compensatory effect of the increased numbers of B cells in the bone marrow and peripheral lymphoid organs of splenectomized mice was reflected in the level of the serum immunoglobulins. Apart from a lower IgM concentration in the serum of splenectomized mice, no significant differences were found in IgG1, IgG2b, and IgA levels between splenectomized and sham-splenectomized mice. It is concluded that the spleen is not essential for both normal B-lymphocyte differentiation and maturation after irradiation and reconstitution.  相似文献   

15.
Na?ve murine B cells are typically divided into three subsets based on functional and phenotypic characteristics: innate-like B-1 and marginal zone B cells vs. adaptive B-2 cells, also known as follicular or conventional B cells. B-1 cells, the innate-immune-like component of the B cell lineage are the primary source of natural antibodies and have been shown to modulate autoimmune diseases, human B-cell leukemias, and inflammatory disorders such as atherosclerosis. On the other hand, B-2 cells are the principal mediators of the adaptive humoral immune response and represent an important pharmacological target for various conditions including rheumatoid arthritis, lupus erythematosus, and lymphomas. Using the resources of the Nuclear Receptor Signaling Atlas program, we used quantitative real-time PCR to assess the complement of the 49 murine nuclear receptor superfamily expressed in quiescent and toll-like receptor (TLR)-stimulated peritoneal B-1 and B-2 cells. We report the expression of 24 nuclear receptors in basal B-1 cells and 25 nuclear receptors in basal B-2 cells, with, in some cases, dramatic changes in response to TLR 4 or TLR 2/1 stimulation. Comparative nuclear receptor profiling between B-1 and peritoneal B-2 cells reveals a highly concordant expression pattern, albeit at quantitatively dissimilar levels. We also found that splenic B cells express 23 nuclear receptors. This catalog of nuclear receptor expression in B-1 and B-2 cells provides data to be used to better understand the specific roles of nuclear receptors in B cell function, chronic inflammation, and autoimmune disease.  相似文献   

16.
17.
Markers of β-cell maturity would be useful in staging the differentiation of stem/progenitor cells to β-cells whether in vivo or in vitro. We previously identified markers for newly formed β-cells in regenerating rat pancreases after 90% partial pancreatectomy. To test the generality of these markers of newly formed β-cells, we examined their expression during the perinatal period, a time of recognized β-cell immaturity. We show by semiquantitative RT-PCR and immunostaining over the time course from embryonic day 18/20 to birth, 1 day, 2 days, 3 days, 7 days, and adult that MMP-2, CK-19, and SPD are truly markers of new and immature β-cells and that their expression transiently peaks in the perinatal period and is not entirely synchronous. The shared expression of these markers among fetal, newborn, and newly regenerated β-cells, but not adult, strongly supports their use as potential markers for new β-cells in the assessment of both the maturity of stem cell–derived insulin-producing cells and the presence of newly formed islets (neogenesis) in the adult pancreas. (J Histochem Cytochem 58:369–376, 2010)  相似文献   

18.
Apoptosis plays an important regulatory role in mammalian embryogenesis and development. EAT/mcl-1 (EAT), an anti-apoptotic bcl-2-related gene, was isolated during the early differentiation of a human embryonal carcinoma cell line, an event which serves as a model of early embryogenesis. EAT is involved in apoptotic regulation and is believed to also function as an immediate-early gene. Thus it was hypothesized that EAT would be expressed during early embryogenesis and would be involved in the regulation of apoptosis during this critical period. To clarify this early expression, two antibodies to EAT were generated by use of immunizing oligopeptide (aa 37-55) and recombinant protein (aa 31-229) for use in immunohistochemistry and immunoblotting, respectively. With these antibodies, we then determined EAT expression during murine embryogenesis and in human development, using human fetal tissue of 6 to 23 gestational weeks. During murine embryogenesis, the EAT protein was found to be rapidly induced after fertilization, to peak at the 2-cell stage, to remain constant until the 8-cell stage, and then to decrease to below unfertilized egg levels in blastocysts. EAT expression patterns in early human development were found to essentially overlap those observed in adult tissues which suggest that EAT expression continues until adulthood in terminally differentiated tissues. Among tissues distinct to fetal development, EAT was detected in the mesonephric (Wolffian) duct and paramesonephric (Müllerian) duct. It is also noteworthy that prominent EAT immunoreactivity was also observed in large primary oocytes in 21-week fetal ovary, but was not detected in primordial germ cells in 23-week fetal testis. In summary, EAT expression was detected in hematopoietic, epithelial, neural, endocrine, and urogenital cells; this provides evidence that EAT, as an anti-apoptotic molecule, possibly functions to regulate apoptosis during development in these systems.  相似文献   

19.
Adult animal cloning has progressed to allow the production of offspring cloned from adult cells, however many cloned calves die prenatally or shortly after birth. This study examined the expression of three important metabolic enzymes, lactate dehydrogenase (LDH), citrate synthase, and phosphofructokinase (PFK), to determine if their detection in nuclear transfer (NT) embryos mimics that determined for in vitro produced embryos. A day 40 nuclear transfer produced fetus derived from an adult cell line was collected and fetal fibroblast cultures were established and maintained. Reconstructed NT embryos were then produced from this cell line, and RT-PCR was used to evaluate mRNA reprogramming. All three mRNAs encoding these enzymes were detected in the regenerated fetal fibroblast cell line. Detection patterns were first determined for IVF produced embryos (1-cell, 2-cell, 6-8 cell, morula, and blastocyst stages) to compare with their detection in NT embryos. PFK has three subunits: PFK-L, PFK-M, and PFK-P. PFK-L and PFK-P were not detected in bovine oocytes. PFK subunits were not detected in 6-8 cell embryos but were detected in blastocysts. Results from NT embryo RT-PCR demonstrated that PFK was not detected in 8-cell NT embryos but was detected in NT blastocysts indicating that proper nuclear reprogramming had occurred. Citrate synthase was detected in oocytes and throughout development to the blastocyst stage in both bovine IVF and NT embryos. LDH-A and LDH-B were detected in bovine oocytes and in all stages of IVF and NT embryos examined up to the blastocyst stage. A third subunit, LDH-C was not detected at the blastocyst stage in IVF or NT embryos but was detected in all earlier stages and in mature oocytes. In addition, LDH-C mRNA was detected in gonad isolated from the NT and an in vivo produced control fetus. These results indicate that the three metabolic enzymes maintain normal expression patterns and therefore must be properly reprogrammed following nuclear transfer.  相似文献   

20.
There is growing evidence that the differentiation processes in the fetal and adult thymus are not identical. However, there is little information on whether these developmental differences influence the properties of mature cells that exit the thymus and seed peripheral lymphoid organs. We have addressed this issue by comparing the development of Ag-specific Th1/Th2 function by fetal vs adult thymic derived CD4(+) cells in the same adoptive adult hosts. Host mice were irradiated and transplanted with 14- to 15-day fetal thymic lobes from Thy-1 congenic mice. Ag (keyhole limpet hemocyanin)-specific Th1/Th2 responses of fetal-derived (donor) or adult-derived (host) CD4(+) cells were analyzed by ELISA following primary or secondary immunization. Fetal-derived cells produced up to 10-fold more of both Th1 (IFN-gamma) and Th2 (IL-4) cytokines than did adult-derived cells. Comparisons of the IL-4:IFN-gamma ratios showed that the responses of fetal-derived cells were Th2-skewed in an Ag dose-dependent manner. At low doses of Ag, the fetal-derived ratio was approximately 5 times higher than the adult-derived ratio. As the Ag dose was increased, the differences between the ratios of the fetal- and adult-derived responses were minimized. These relative responses were established initially during the primary effector phase but were maintained for weeks, into the memory phase of the immune response. Importantly, fetal-derived CD4(+) cells showed these properties whether the fetal thymic precursors matured within the fetal or adult thymic microenvironment. These results demonstrate that cells arising from fetal thymic precursors are functionally different both qualitatively and quantitatively from adult-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号