首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The influence of K+ ions on the net Na+ fluxes in cells of excised barley roots (Hordeum distichon L.) and roots of whole barley plants was investigated. The fluxes were determined by flame photometry in the external solution. In both cases a transient net Na+ efflux against the external Na+ concentration was observed upon addition of K+. The results stress the effectiveness of the K+-dependent Na+ efflux mechanism residing at the plasmalemma, and its involvement in K–Na-selectivity in whole barley plants.  相似文献   

2.
Summary The influence of K+ on the Na+ fluxes of barley root cells was investigated. A increased K+ concentration (K+ influx) results in a transient increase of the plasmalemma efflux of Na+ followed by a decrease, and in a decrease of the cytoplasmic content and the tonoplast influx of Na+. These results are consistent with a Na-K-pump at the plasmalemma.  相似文献   

3.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

4.
Close coupling between extrusion of H+ and uptake of K+ by barley roots   总被引:1,自引:0,他引:1  
Rudolf Behl  Klaus Raschke 《Planta》1987,172(4):531-538
Extrusion of H+ by intact barley (Hordeum vulgare L.) roots was automatically titrated. Simultaneously, uptake of K+ into the roots, transport of K+ through the roots, and (as a residual term) accumulation of K+ within the root tissue were determined. When no monovalent cation was present in the medium the steady rate of H+ release was close to zero. Addition of K+ stimulated H+ extrusion within less than 1 min. The stimulation of H+ release was apparently limited only by the movement of K+ through the apoplast of the roots. The steady rate of H+ extrusion depended on the availability of external K+ and saturated at a K+ concentration of about 100 mol· dm-3. Half-maximum rates of net K+ uptake and H+ extrusion were reached at a K+ concentration of about 10 mol·dm-3. With (slowly absorbable) sulfate as the only anion present, the stoichoimetry between H+ release and net K+ uptake was one. In conclusion, the uptake of K+ across the plasmalemma of the cells of the root cortex is electrically coupled to H+ extrusion.  相似文献   

5.
Using the compartmental analysis the unidirectional Na+ fluxesin cortical cells of barley roots, the cytoplasmic and vacuolarNa+ contents Qc and Qv, and the trans-root Na+ transport R'have been studied as a function of the external Na+ concentration.Using the re-elution technique the effect of low K+ concentrationson the plasmalemma efflux co of Na+ (K+-Na+ exchange) and onR' was investigated at different Na+ concentrations and correspondinglydifferent values of the cytoplasmic sodium content Qc. The relationof the K+-dependent Na+ efflux coK+-dep to Qc or to the cytoplasmicNa+ concentration obeyed Michaelis-Menten kinetics. This isconsistent with a linkage of co, K+-dep to K+ influx by a K+-Na+exchange system. The apparent Km corresponded to a cytoplasmicNa+ concentration of 28 mM at 0·2 mM K+ and about 0·2mM Na+ in the external solution. 0·2 mM K+ stimulatedthe plasma-lemma efflux of Na+ and inhibited Na+ transport selectivelyeven in the presence of 10 mM Na+ in the external medium showingthe high efficiency of the K+-Na+ exchange system. However,co, K+-dep was inhibited at 10 mM Na1 compared to lower Na1concentrations suggesting some competition of Na1 with K1 atthe external site of the exchange system. The effect of theNa+ concentration on Na1 influx oc is discussed with respectto kinetic models of uuptake.  相似文献   

6.
Using excised low-salt roots of barley and Atriplex hortenslsthe transport of endogenous potassium through the xylem vesselswas studied It was enhanced by nitrate and additionally by sodiumions which apparently replaced vacuolar potassium which wasthen available in the symplasm of root cells for transport tothe shoot Vacuolar Na/K exchange also has been investigatedby measurements of longitudinal ion profiles in single rootsof both species. In Atriplex roots a change in the externalsolution from K+ to Na+ induced an exchange of vacuolar K+ forNa+, in particular in the subapical root tissues and led toincreased K+ transport and loss of K+ from the cortex. In inverseexperiments a change from Na+ to K+ did not induce an exchangeof vacuolar Na+; merely in meristematic tissues Na+—apparentlyfrom the cytoplasm—was extruded in exchange for K+. Inroots of barley seedlings without caryopsis, as in excised roots,a massive exchange of K+ for Na+ was observed in the continuouspresence of external 1.0 mM Na and 0.2 mM K. This exchange alsowas attributed to the vacuole and was most pronounced in theyoung subapical tissues. It did not occur, however, in the correspondingtissues in roots of fully intact barley seedlings. In these,the young tissues retained a relatively high K/Na ratio alsoin their vacuoles. Similarly, contrasting results were obtainedwith intact and excised roots of Zea mays L. Based on theseresults a scheme of the events that lead to selective cationuptake in intact barley roots is proposed. In this scheme acrucial factor of selectivity is sufficient phloem recirculationof K+ by the aid of which K+ rich cortical cells are formednear the root tip. When matured these cells are suggested tomaintain a high cytoplasmic K/Na ratio due to K+ dependent sodiumextrusion at the plasmalemma and due to recovery of vacuolarK+ by Na/K exchange across the tonoplast. Key words: Potassium/Sodium selectivity, Vacuolar exchange, Xylem transport, Hordeum, Zea, Atriplex  相似文献   

7.
W. D. Jeschke 《Plant and Soil》1983,72(2-3):197-212
Summary In this short survey differences between species and varieties in the four major mechanisms that affect selective uptake of potassium and sodium to the plant within the root are considered. These include influx selectivity, K+/Na+ exchange at the plasmalemma, and selectivity at the tonoplast as well as at the symplasm-xylem boundary. The affinity of various plants for potassium influx in system 1 is rather uniform although varietal differences in barley have been observed. Differences are much more pronounced for sodium influx, for which Helianthus showed rather high and Fagopyrum rather low affinity. There is substantial variation between species in the efficiency of K+/Na+ exchange at the plasmalemma of cortical root cells; the three cereals Hordeum, Triticum, and Secale were highly efficient while K+/Na+ exchange in Atriplex, Helianthus and Allium was poor, even if the cytoplasmic sodium content was accounted for. Apparently there was no direct relation between salt tolerance and K+/Na+ exchange. The observed differences in the efficiency of K+-dependent sodium extrusion or K+/Na+ exchange were not due to the use of excised roots, they were observed also when roots of whole seedlings were investigated. At the tonoplast a 11 exchange of vacuolar potassium for sodium has been observed in roots of Hordeum. By this exchange sodium ions are removed from the symplasm and potassium ions are recovered from vacuoles and thus made available for transport to the shoot. Indications for specific differences in this exchange have been observed; the exchange appears to be more efficient in Helianthus than in Hordeum roots. More comparative studies are needed here. At the boundary between symplasm and xylem vessels selectivity can be set up during xylem release of cations and there are reports that suggest a preference for sodium (Lycopersicum cheesemanii, Solanum pennellii, and Suaeda) and for varietal differences amongst tomatoes. Selectivity at this boundary, the plasmalemma of the xylem parenchyma cells was described in this paper by the selectivity ratio of transport that relates the rates of xylem transport to the cytoplasmic sodium and potassium concentrations. Based on this ratioAtriplex hortensis was shown to discriminate for sodium during xylem release while there was little selectivity in Hordeum and possibly some discrimination in favour of K+ in Allium roots. The data are shortly discussed in relation to salt tolerance and to the breeding of salt-tolerant crop varieties.  相似文献   

8.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

9.
Na+ and K+ transport in excised soybean roots   总被引:1,自引:0,他引:1  
Uptake, accumulation and xylem transport of K+ and Na+ in excised roots of soybean were investigated by use of a perfusion technique. This technique permitted independent quantification of, on the one hand, entry of ions into the roots and their transport through the cortex to the xylem vessels, and on the other hand reabsorption from the xylem vessels to the neighbouring cells and the external medium. Data are consistent with a low degree of selective uptake of K+ over Na+. However, Na+ depletion of the xylem stream by reabsorption limits, although weakly, its translocation to the shoots. Na+ reabsorbed is for a great part reexcreted into the external medium. The low efficiency of these processes is discussed in relation to the Na+ sensitivity of soybean.  相似文献   

10.
The ionic requirements for K+-evoked efflux of endogenous taurine from primary cerebellar astrocyte cultures were studied. The Ca2+ ionophore A23187 evoked taurine efflux in a dose-dependent fashion with a time-course identical to that of K+-induced efflux. The Ca2+-channel antagonist nifedipine had no effect upon efflux induced by 10 or 50 mM K+. In addition, verapamil did not antagonize 50 mM K+-evoked efflux except at high, non-pharmacological concentrations (>100 M), and preincubation with 2 M -conotoxin had no effect on 50 mM K+-evoked efflux. Similarly, preincubation with 1 mM ouabain had no effect on the amount of taurine released by K+ stimulation, but did accelerate the onset of efflux by 2–4 min. Although 2 M tetrodotoxin had no effect on K+-evoked release, replacing Na+ with choline abolished the taurine efflux seen in response to K+ stimulation. Together, these findings suggest that neuronal N- and L-type Ca2+- and voltage-dependent Na+-channels are not involved in the influx of Ca2+ which appears to be necessary for K+-evoked taurine efflux, and that in addition to Ca2+, extracellular Na+ is also required.  相似文献   

11.
Salinity causes billion dollar losses in annual crop production. So far, the main avenue in breeding crops for salt tolerance has been to reduce Na+ uptake and transport from roots to shoots. Recently we have demonstrated that retention of cytosolic K+ could be considered as another key factor in conferring salt tolerance in plants. A subsequent study has shown that Na+-induced K+ efflux in barley root epidermis occurs primarily via outward rectifying K+ channels (KORC). Surprisingly, expression of KORC was similar in salt- tolerant and sensitive genotypes. However, the former were able to better oppose Na+-induced depolarization via enhanced activity of plasma membrane H+-ATPase (thus minimizing K+ leak from the cytosol). In addition to highly K+-selective KORC channels, activities of several types of non-selective cation channels were detected at depolarizing potentials. Here we show that the expression of one of them, NORC, was significantly lower in salt-tolerant genotypes. As NORC is capable of mediating K+ efflux coupled to Na+ influx, we suggest that the restriction of its activity could be beneficial for plants under salt stress.Key words: salinity tolerance, barley, ion flux, K+ homeostasis, KOR, non-selective channels, patch-clamp  相似文献   

12.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

13.
14.
15.
Summary The purpose of this work was to determine if hypotonicity, in addition to the stimulation of active Na+ transport (Venosa, R.A., 1978,Biochim. Biophys. Acta 510:378–383), promoted changes in (i) active K+ influx, (ii) passive Na and K+ fluxes, and (iii) the number of3H-ouabain binding sites.The results indicate that a reduction of external osmotic pressure () to one-half of its normal value (=0.5) produced the following effects: (i) an increase in active K+ influx on the order of 160%, (ii) a 20% reduction in Na+ influx and K+ permeability (P K), and (iii) a 40% increase in the apparent density of ouabain binding sites. These data suggest that the hypotonic stimulation of the Na+ pump is not caused by an increased leak of either Na+ (inward) or K+ (outward). It is unlikely that the stimulation of active Na+ extrusion and the rise in the apparent number of pump sites produced by hypotonicity were due to a reduction of the intracellular ionic strength. It appears that, at least in part, the stimulation of active Na+ transport takes place whenever muscles are transferred from one medium to another of lower tonicity even if neither one was hypotonic (for instance =2 to =1 transfer). Comparison of the present results with those previously reported indicate that in addition to the number of pump sites, the cycling rate of the pump is increased by hypotonicity. Active Na+ and K+ fluxes were not significantly altered by hypertonicity (=2).  相似文献   

16.
Summary Potassium and sodium cation permeabilities of skeletal sarcoplasmic reticulum vesicles were characterized by means of3H-choline,22Na+ and86Rb+ isotope efflux and membrane potential measurements. Membrane potentials were generated by diluting K gluconate filled sarcoplasmic reticulum vesicles and liposomes into Tris or Na gluconate media, in the presence or absence of valinomycin, and were measured using the voltage-sensitive membrane probe 3,3-dipentyl-2,2-oxacarbocyanine. About 2/3 of the sarcoplasmic reticulum vesicles, designated Type I, were found to be permeable to Rb+, K+ and Na+. The remaining 1/3, Type II vesicles, were essentially impermeable to these ions. The two types of vesicles were impermeable to larger cations such as choline or Tris. Both were present in about the same ratio in fractions derived from different parts of the reticulum structure. Studies with cations of different size and shape suggested that in Type I vesicles permeation was restricted to molecules fitting through a pore with a cross-section of 4–5 Å by 6 Å or more. When vesicles were sonicated, vesicles permeable to K+ decreased more than those impermeable to K+. These data suggest the existence of K+, Na+ permeable channels which are probably randomly dispersed in the intact reticulum structure at an estimated density of 50 pores/m2. The function of the channel may be to allow rapid K+ movement to counter Ca2+ fluxes during muscle contraction and relaxation.  相似文献   

17.
Reducing Na+ accumulation and maintaining K+ stability in plant is one of the key strategies for improving salt tolerance. AtHKT1;1 and AtSOS1 are not only the salt tolerance determinants themselves, but also mediate K+ uptake and transport indirectly. To assess the contribution of AtHKT1;1 and AtSOS1 to Na+ homeostasis and K+ nutrition in plant, net Na+ and K+ uptake rate, Na+ and K+ distributions in Arabidopsis thaliana wild type (WT), hkt1;1 mutant (athkt1;1) and sos1 mutant (atsos1) were investigated. Results showed that under 2.5 mM K+ plus 25 or 100 mM NaCl, athkt1;1 shoot concurrently accumulated more Na+ and less K+ than did WT shoot, suggesting that AtHKT1;1 was critical for controlling Na+ and K+ distribution in plant; while atsos1 root accumulated more Na+ and absorbed lower K+ than did WT root, implying that AtSOS1 was determiner of Na+ excretion and K+ acquisition. Under 0.01 mM K+, athkt1;1 absorbed lower Na+ than did WT with 100 mM NaCl, suggesting that AtHKT1;1 is involved in Na+ uptake in roots; while atsos1 shoot accumulated less Na+ than did WT shoot no matter with 25 or 100 mM NaCl, implying that AtSOS1 played a key role in controlling long-distance Na+ transport from root to shoot. We present a model in which coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in A. thaliana under salt stress: under the normal K+, the major function of AtHKT1;1 is Na+ unloading and AtSOS1 is mainly involved in Na+ exclusion, whereas under the low K+, AtHKT1;1 may play a dominant role in Na+ uptake and AtSOS1 may be mainly involved in Na+ loading into the xylem.  相似文献   

18.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

19.
Unidirectional fluxes and the cytoplasmic and vacuolar contentsof potassium and sodium in root cells of intact barley seedlings(Hordeum vulgare L., cv. Villa) were determined by use of compartmentalanalysis. In addition, the net vacuolar accumulation Jcv andthe xylem transport øcx of K+ and Na+ were measured.Both of these data were needed for the evaluation of the effluxdata. Fluxes and compartmental contents of K+ and Na+ were comparableto data obtained with excised roots. The effect of the shoot-to-rootratio—as varied by partial excision of the seedlings seminalroots—on the fluxes and contents was investigated. Highershoot-to-root ratios induced an increase in xylem transport,in plasmalemma influx, and also in the cytoplasmic content ofK+ and Na+. With potassium the plasmalemma efflux was almostunaltered while the tonoplast fluxes and vacuolar content weredecreased (in presence of Na+). With sodium, on the other hand,the plasmalemma efflux and the tonoplast fluxes were also increasedin the plants having one root and a high shoot-to-root ratio.These changes occurred even under conditions of low humidity,when transpiration was low and guttation occurred. The latterwas also increased at the high shoot-to-root ratio. The observedchanges could be due to a relieved feedback control of ion fluxesby the shoot and mediated in part by a relatively higher supplyof photosynthates in the plants having one root In addition,hormonal signals were suggested to participate. In particulara possibly decreased level of cytokinins in the plants havingonly one root could contribute to the signal. The observed changesappear to be responses of the plant to an alteration that canoccur under natural conditions when the root system is damaged.  相似文献   

20.
It is well known that nitric oxide (NO) enhances salt tolerance of glycophytes. However, the effect of NO on modulating ionic balance in halophytes is not very clear. This study focuses on the role of NO in mediating K+/Na+ balance in a mangrove species, Kandelia obovata Sheue, Liu and Yong. We first analyzed the effects of sodium nitroprusside (SNP), an NO donor, on ion content and ion flux in the roots of K. obovata under high salinity. The results showed that 100 μM SNP significantly increased K+ content and Na+ efflux, but decreased Na+ content and K+ efflux. These effects of NO were reversed by specific NO synthesis inhibitor and scavenger, which confirmed the role of NO in retaining K+ and reducing Na+ in K. obovata roots. Using western-blot analysis, we found that NO increased the protein expression of plasma membrane (PM) H+-ATPase and vacuolar Na+/H+ antiporter, which were crucial proteins for ionic balance. To further clarify the molecular mechanism of NO-modulated K+/Na+ balance, partial cDNA fragments of inward-rectifying K+ channel, PM Na+/H+ antiporter, PM H+-ATPase, vacuolar Na+/H+ antiporter and vacuolar H+-ATPase subunit c were isolated. Results of quantitative real-time PCR showed that NO increased the relative expression levels of these genes, while this increase was blocked by NO synthesis inhibitors and scavenger. Above results indicate that NO greatly contribute to K+/Na+ balance in high salinity-treated K. obovata roots, by activating AKT1-type K+ channel and Na+/H+ antiporter, which are the critical components in K+/Na+ transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号