首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5' and 3' noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process.  相似文献   

2.
New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes.  相似文献   

3.
The kinetics of low-pH induced fusion of influenza virus with liposomes have been compared to changes in the morphology of influenza hemagglutinin (HA). At pH 4.9 and 30 degrees C, the fusion of influenza A/PR/8/34 virus with ganglioside-bearing liposomes was complete within 6 min. Virus preincubated at pH 4.9 and 30 degrees C in the absence of liposomes for 2 or 10 min retained most of its fusion activity. However, fusion activity was dramatically reduced after 30 min, and virtually abolished after a 60-min preincubation. Cryo-electron microscopy showed that the hemagglutinin spikes of virions exposed to pH 4.9 at 30 degrees C for 10 min underwent no major morphological changes. After 30 min, however, the spike morphology changed dramatically, and further changes occurred for up to 60 min after exposure to low pH. Because the morphological changes occur at a rate corresponding to the loss of fusion activity, and because these changes are much slower than the rate at which fusion occurs, we conclude that the morphologically altered HA is inactive with respect to fusion-promoting activity. Molecular modeling studies indicate that the formation of an extended coiled coil within the HA trimer, as proposed for HA at low pH, requires a major conformational change in HA, and that the morphological changes we observe are consistent with the formation of an extended coiled coil. These results imply that the crystallographically determined low-pH form of HA does occur in the intact virus, but that this form is not a precursor of viral fusion. It is speculated that the motion to the low-pH form may be responsible for the membrane destabilization leading to fusion.  相似文献   

4.
In the infectious entry pathway of influenza virus, the low pH of the endosomal compartment induces an irreversible conformational change in influenza virus hemagglutinin, leading to fusion of viral and endosomal membranes. In the current report, we characterized the low-pH-induced activation of hemagglutinin of influenza strain X31 by studying its interaction with a lipid monolayer. The surface activities of virions, of isolated hemagglutinins and its proteolytic fragments, and of a synthetic peptide mimicking the amino terminus of subunit 2 of hemagglutinin are compared. The data indicate that the surface activity of both virions and isolated hemagglutinin develop as a result of the low-pH-induced conformational change in hemagglutinin. The surface activity of isolated hemagglutinin is mainly caused by penetration into the lipid monolayer of protein domains other than the amino terminus of subunit 2 of hemagglutinin; domains in subunit 1 may be involved. The surface activity of virions appears to be a secondary effect of the conformational change and is explained by assuming a net transfer of viral lipids to the lipid monolayer.  相似文献   

5.
6.
Six nonoverlapping peptides of the neuraminidase (NA) glycoprotein of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8 virus) were found to be immunogenic for proliferating T cells when injected into BALB/c mice in Freund adjuvant. T cells elicited by peptide immunization could recognize PR8 virus in vitro. However, only one of these peptides, corresponding to residues 79 to 93 of NA (NA 79-93), was able to restimulate T cells of mice immunized with infectious virus. T cells that recognized this peptide were uniformly I-Ed restricted, yet infectious influenza virus was required for responses. NA 79-93-specific T-hybridoma clones raised by immunization either with whole virus or with the synthetic peptide alone each responded to replicative virus and not to UV-inactivated virions. These data suggest that the NA 79-93 T-cell determinant which is commonly presented during an encounter with influenza virus in vivo is processed preferentially from NA synthesized within antigen-presenting cells.  相似文献   

7.
The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A three-partite fusion protein (consisting of NP, M1 and NS1) was expressed much more efficiently than the four-partite protein. Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1 being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination regimens and preparations is discussed.  相似文献   

8.
The significance of the conserved cytoplasmic tail sequence of influenza A virus neuraminidase (NA) was analyzed by the recently developed reverse genetics technique (W. Luytjes, M. Krystal, M. Enami, J. D. Parvin, and P. Palese, Cell 59:1107-1113, 1989). A chimeric influenza virus A/WSN/33 NA containing the influenza B virus cytoplasmic tail rescued influenza A virus infectivity. The transfectant virus had less NA incorporated into virions than A/WSN/33, indicating that the cytoplasmic tail of influenza virus NA plays a role in incorporation of NA into virions. However, these results also suggest that the influenza A virus and influenza B virus cytoplasmic tail sequences share common features that lead to the production of infectious virus. Transfectant virus was obtained with all cytoplasmic tail mutants generated by site-directed mutagenesis of the influenza A virus tail, except for the mutant resulting from substitution of the conserved proline residue, presumably because of its contribution to the secondary structure of the tail. No virus was rescued when the cytoplasmic tail was deleted, indicating that the cytoplasmic tail is essential for production of the virus. The virulence of the transfectant viruses in mice was directly proportional to the amount of NA incorporated. The importance of the NA cytoplasmic tail in virus assembly and virulence has implications for use in developing antiviral strategies.  相似文献   

9.
Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.  相似文献   

10.
Conventional influenza vaccines need to be designed and manufactured yearly. However, they occasionally provide poor protection owing to antigenic mismatch. Hence, there is an urgent need to develop universal vaccines against influenza virus. Using nucleoprotein(NP) and extracellular domain of matrix protein 2(M2e) genes from the influenza A virus A/Beijing/30/95(H3N2), we constructed four recombinant vaccinia virus-based influenza vaccines carrying NP fused with one or four copies of M2e genes in different orders. The recombinant vaccinia viruses were used to immunize BALB/C mice. Humoral and cellular responses were measured, and then the immunized mice were challenged with the influenza A virus A/Puerto Rico/8/34(PR8). NP-specific humoral response was elicited in mice immunized with recombinant vaccinia viruses carrying full-length NP, while robust M2e-specific humoral response was elicited only in the mice immunized with recombinant vaccinia viruses carrying multiple copies of M2e. All recombinant viruses elicited NP-and M2e-specific cellular immune responses in mice. Only immunization with RVJ-4M2eNP induced remarkably higher levels of IL-2 and IL-10 cytokines specific to M2e. Furthermore, RVJ-4M2eNP immunization provided the highest cross-protection in mice challenged with 20 MLD_(50) of PR8. Therefore, the cross-protection potentially correlates with both NP and M2e-specific humoral and cellular immune responses induced by RVJ-4M2eNP, which expresses a fusion antigen of full-length NP preceded by four M2e repeats. These results suggest that the rational fusion of NP and multiple M2e antigens is critical toward inducing protective immune responses, and the 4M2eNP fusion antigen may be employed to develop a universal influenza vaccine.  相似文献   

11.
Huang  Baoying  Wang  Wenling  Li  Renqing  Wang  Xiuping  Jiang  Tao  Qi  Xiangrong  Gao  Yingying  Tan  Wenjie  Ruan  Li 《Virology journal》2012,9(1):1-13
Immunity to conserved viral antigens is an attractive approach to develop a universal vaccine against epidemic and pandemic influenza. A nucleoprotein (NP)-based vaccine has been explored and preliminary studies have shown promise. However, no study has explored the immunity and cross-protective efficacy of recombinant NP derived from Escherichia coli compared with recombinant vaccinia virus (Tiantan). Recombinant NP protein (rNP) from influenza virus A/Jingke/30/95(H3N2) was obtained from E. coli and recombinant vaccinia virus (Tiantan) RVJ1175NP. Purified rNP without adjuvant and RVJ1175NP were used to immunize BALB/c mice intramuscularly. Humoral immune responses were detected by ELISA, while cell-mediated immune responses were measured by ex vivo IFN-γ ELISPOT and in vivo cytotoxicity assays. The cross-protective efficacy was assessed by a challenge with a heterosubtype of influenza virus A/PR/8/34(H1N1). Our results demonstrate that a high dose (90 μg) of rNP induced NP-specific antibodies and T cell responses that were comparable with those of RVJ1175NP in mice. Importantly, the survival ratio (36, 73, and 78%) of the vaccinated mice after the influenza virus A/PR/8/34(H1N1) challenge was rNP vaccine dose-dependent (10, 30, and 90 μg, respectively), and no significant differences were observed between the rNP- and RVJ1175NP-immunized (91%) mice. Influenza A virus NP derived from E. coli or recombinant vaccinia (Tiantan) virus elicited cross-protection against influenza virus in mice, and the immune response and protective efficacy of rNP were comparable to RVJ1175NP. These data provide a basis for the use of prokaryotically expressed NP as a candidate universal influenza vaccine.  相似文献   

12.
Traditionally, immunoglobulin A (IgA) was thought to neutralize virus by forming complexes with viral attachment proteins, blocking attachment of virions to host epithelial cells. Recently we have proposed an intracellular action for dimeric IgA, which is actively transported through epithelial cells by the polymeric immunoglobulin receptor (pIgR), in that it may be able to bind to newly synthesized viral proteins within the cell, preventing viral assembly. To this effect, we have previously demonstrated that IgA monoclonal antibodies against Sendai virus, a parainfluenza virus, colocalize with the viral hemagglutinin-neuraminidase protein within infected epithelial cells and reduce intracellular viral titers. Here we determine whether IgA can interact with influenza virus hemagglutinin (HA) protein within epithelial cells. Polarized monolayers of Madin-Darby canine kidney epithelial cells expressing the pIgR were infected on their apical surfaces with influenza virus A/Puerto Rico/8-Mount Sinai. Polymeric IgA anti-HA, but not IgG anti-HA, delivered to the basolateral surface colocalized with HA protein within the cell by immunofluorescence. Compared with those of controls, viral titers were reduced in the supernatants and cell lysates from monolayers treated with anti-HA IgA but not with anti-HA IgG. Furthermore, the addition of anti-IgA antibodies to supernatants did not interfere with the neutralizing activity of IgA placed in the basal chamber, indicating that IgA was acting within the cell and not in the extracellular medium to interrupt viral replication. Thus, these studies provide additional support for the concept that IgA can inhibit replication of microbial pathogens intracellularly.  相似文献   

13.
Sendai and influenza virions are able to fuse with mycoplasmata. Virus-Mycoplasma fusion was demonstrated by the use of fluorescently labeled intact virions and fluorescence dequenching, as well as by electron microscopy. A high degree of fusion was observed upon incubation of both virions with Mycoplasma gallisepticum or Mycoplasma capricolum. Significantly less virus-cell fusion was observed with Acholeplasma laidlawii, whose membrane contains relatively low amounts of cholesterol. The requirement of cholesterol for allowing virus-Mycoplasma fusion was also demonstrated by showing that a low degree of fusion was obtained with M. capricolum, whose cholesterol content was decreased by modifying its growth medium. Fluorescence dequenching was not observed by incubating unfusogenic virions with mycoplasmata. Sendai virions were rendered nonfusogenic by treatment with trypsin, phenylmethylsulfonyl fluoride, or dithiothreitol, whereas influenza virions were made nonfusogenic by treatment with glutaraldehyde, ammonium hydroxide, high temperatures, or incubation at low pH. Practically no fusion was observed using influenza virions bearing uncleaved hemagglutinin. Trypsinization of influenza virions bearing uncleaved hemagglutinin greatly stimulated their ability to fuse with Mycoplasma cells. Similarly to intact virus particles, also reconstituted virus envelopes, bearing the two viral glycoproteins, fused with M. capricolum. However, membrane vesicles, bearing only the viral binding (HN) or fusion (F) glycoproteins, failed to fuse with mycoplasmata. Fusion between animal enveloped virions and prokaryotic cells was thus demonstrated.  相似文献   

14.
In the present study, we have compared the T cell antigenic determinants on nucleoprotein (NP) of influenza A/NT/60/68 virus recognized by BALB/c mice (H-2d) after vaccination using several different vehicles with the determinants recognized after exposure to infectious virus. Mice were immunized s.c. with: 1) purified recombinant NP with three different adjuvants--alum, saponin, or CFA; 2) whole inactivated A/Okuda virus in PBS or saponin; or 3) live attenuated Salmonella typhimurium AroA- vector expressing NP. A series of overlapping synthetic peptides that cover more than 90% of the amino acid sequence of NP were used to map the Th cell epitopes. The results showed that the same limited number of major epitopes were recognized after each of the different immunization regimes. Secondary in vivo boosting using the same vehicles as for the primary immunization did not increase the number of different T cell sites recognized. The T cell responses after intranasal infection with infectious A/NT/60/68 or A/PR/8/34 virus also showed a similar pattern of recognition of the major CD4-positive T cell epitopes. The only exception was that the region corresponding to residues 401-419 was only recognized after exposure to NP from A/NT/60/68 but not A/PR/8/34. This is probably because the two viruses differ in amino acid sequence at positions 408 and 411 within this part of the NP molecule. In contrast to the results observed with CD4-positive T cell epitopes, the major determinant recognized by CD8-positive T cells was only presented after live viral infection. The results in this study have important implications for vaccine design, inasmuch as they indicate that the same dominant CD4 T cell determinants on NP presented by vaccination with NP are also recognized by T cells from mice exposed to infectious virus.  相似文献   

15.
It is known that fusion of influenza virus to host cell membranes is strongly promoted by acidic pH. We have determined conditions required to obtain pH-dependent fusion of influenza virus to planar bilayer membranes. The rate of viral fusion was determined from the flash rate of R18-labeled virions delivered to the surface of the planar membrane by pressure-ejection from a pipette. For a bilayer formed only of phospholipids and cholesterol, the fusion rate was independent of pH and unaffected by the phospholipid composition. When the gangliosides GD1a + GT1b were included in the planar membrane, however, the fusion rate varied steeply with pH. The rate at pH 7.4 in the presence of the gangliosides was about an order of magnitude less than in their absence. At pH less than approximately 5.5, the rate was about an order of magnitude greater in the presence of gangliosides than in their absence. The fusion rate with planar membranes containing globoside, a ceramide-backboned glycolipid, was also independent of pH, indicating that the pH dependence required sialic acid on the carbohydrate moiety of the glycolipid. The gangliosides GM1a and GM3, both of which possess sialic acid, produced the same pH-dependent fusion rate as seen with GD1a + GT1b, indicating that the presence, but not the location, of terminal sialic acids is critical. Incubating virus with soluble sialyllactose blocked fusion to both ganglioside-free and ganglioside-containing planar membranes. These results show that the pH dependence of influenza virion fusion arises from the interaction of the sialic acid receptor with the influenza hemagglutinin. A model for sialic acid-hemagglutinin interactions accounting for pH-dependent fusion is presented.  相似文献   

16.
17.
Representatives of three families of enveloped viruses were shown to fuse tissue culture cells together. These were: Semliki Forest virus (SFV, a togavirus), vesicular stomatitis virus (a rhabdovirus), and two myxoviruses, fowl plaque virus and Japan influenza virus (Japan)/A/305/57). Unlike paramyxoviruses, whose fusion activity is known to occur over a broad pH range, fusion by these viruses was restricted to mildly acidic pH. The pH thresholds for the four viruses were 6.0, 6.1, 5.5, and 5.1, respectively. The precursor form of Japan influenza, which is not infectious and which contains the uncleaved hemagglutinin, had no fusion activity. This result suggested a role for the influenza hemagglutinin in the low-pH-dependent membrane fusion activity. Taken together, our results show that low-pH-induced fusion is a widespread property of enveloped animal viruses and that it may play a role in the infective process. The fusion reactions with all four viruses were fast, efficient, and easy to induce. With UV-inactivated SFV, the fusion was shown to be nonlytic and the polykaryons were viable for at least 12 h. 30 ng of SFV/1 x 10(6) BHK-21 cells were required for 50% fusion, and 250 ng sufficed to fuse the entire culture into a single polykaryon.  相似文献   

18.
One of the key stages of cell infection with influenza virus is the enveloped virus fusion with the cell endosome membrane. To study fusion of single fluorescently-labeled influenza virions with a model bilayer membrane (BLM), a special model system was developed. A small patch of BLM with several adsorbed virions was localized upon a contact with a glass micropipette. Low pH of solution inside the pipette triggered fusion that could be registered by a change in the conductance and integral fluorescence of the BLM patch. It has been shown that the fusion initiation is followed by an increase of fluorescence signal due to the probe redistribution from the virus membrane to the BLM fragment. The increase in fluorescence was accompanied by changes in conductance. Usually, from two to five periods of the channel activity were observed, each of which probably corresponded to fusion of a single virion. It has been found that electric activity was completely inhibited by amantadine known as a blocking agent of M2 channels. This allows one to suggest that the observed changes in conductance are connected with the activity of M2 channels in the virus membrane, whose electric accessibility was the result of fusion of single virions with BLM.  相似文献   

19.
IgA knockout mice (IgA-/-) were generated by gene targeting and were used to determine the role of IgA in protection against mucosal infection by influenza and the value of immunization for preferential induction of secretory IgA. Aerosol challenge of naive IgA-/- mice and their wild-type IgA+/+ littermates with sublethal and lethal doses of influenza virus resulted in similar levels of pulmonary virus infection and mortality. Intranasal and i.p. immunization with influenza vaccine plus cholera toxin/cholera toxin B induced significant mucosal and serum influenza hemagglutinin-specific IgA Abs in IgA+/+ (but not IgA-/-) mice as well as IgG and IgM Abs in both IgA-/- and IgA+/+ mice; both exhibited similar levels of pulmonary and nasal virus replication and mortality following a lethal influenza virus challenge. Monoclonal anti-hemagglutinin IgG1, IgG2a, IgM, and polymeric IgA Abs were equally effective in preventing influenza virus infection in IgA-/- mice. These results indicate that IgA is not required for prevention of influenza virus infection and disease. Indeed, while mucosal immunization for selective induction of IgA against influenza may constitute a useful approach for control of influenza and other respiratory viral infections, strategies that stimulate other Igs in addition may be more desirable.  相似文献   

20.
Host restriction factors play a crucial role in preventing trans-species transmission of viral pathogens. In mammals, the interferon-induced Mx GTPases are powerful antiviral proteins restricting orthomyxoviruses. Hence, the human MxA GTPase may function as an efficient barrier against zoonotic introduction of influenza A viruses into the human population. Successful viruses are likely to acquire adaptive mutations allowing them to evade MxA restriction. We compared the 2009 pandemic influenza A virus [strain A/Hamburg/4/09 (pH1N1)] with a highly pathogenic avian H5N1 isolate [strain A/Thailand/1(KAN-1)/04] for their relative sensitivities to human MxA and murine Mx1. The H5N1 virus was highly sensitive to both Mx GTPases, whereas the pandemic H1N1 virus was almost insensitive. Substitutions of the viral polymerase subunits or the nucleoprotein (NP) in a polymerase reconstitution assay demonstrated that NP was the main determinant of Mx sensitivity. The NP of H5N1 conferred Mx sensitivity to the pandemic H1N1 polymerase, whereas the NP of pandemic H1N1 rendered the H5N1 polymerase insensitive. Reassortant viruses which expressed the NP of H5N1 in a pH1N1 genetic background and vice versa were generated. Congenic Mx1-positive mice survived intranasal infection with these reassortants if the challenge virus contained the avian NP. In contrast, they succumbed to infection if the NP of pH1N1 origin was present. These findings clearly indicate that the origin of NP determines Mx sensitivity and that human influenza viruses acquired adaptive mutations to evade MxA restriction. This also explains our previous observations that human and avian influenza A viruses differ in their sensitivities to Mx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号