首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Aspergillus nidulans nuclear division and cytokinesis are coupled processes during asexual sporulation. Metulae, phialides and conidia contain a single nucleus. Here we describe the role of a putative Saccharomyces cerevisiae Kin4-related kinase, KfsA (kinase for septation) in the control of septum formation in A. nidulans. The kfsA deletion caused an increase in the number of conidiophores with septa in their stalks from 20% in wild type to 60% in the mutant strain. Interestingly, 7% of metulae contained two nuclei and the corresponding phialides remained anucleate, suggesting septum formation before proper segregation of nuclei. This points to a checkpoint control of KfsA, which prevents septum formation before nuclear separation. KfsA localized to the cortex and septa in hyphae and in conidiophores but not to the spindle-pole bodies, as it was shown for Kin4 in yeast. KfsA appeared at septa after actin disappeared, suggesting an additional role of KfsA late during septum formation.  相似文献   

2.
Cytokinesis (septation) in the fungus Aspergillus nidulans occurs through the formation of a transient actin ring at the incipient division site. Temperature-sensitive mutations in the sepA gene prevent septation and cause defects in the maintenance of cellular polarity, without affecting growth and nuclear division. The sepA gene encodes a member of the growing family of FH1/2 proteins, which appear to have roles in morphogenesis and cytokinesis in organisms such as yeast and Drosophila. Results from temperature shift and immunofluorescence microscopy experiments strongly suggest that sepA function requires a preceding mitosis and that sepA acts prior to actin ring formation. Deletion mutants of sepA exhibit temperature-sensitive growth and severe delays in septation at the permissive temperature, indicating that expression of another gene may compensate for the loss of sepA. Conidiophores formed by sepA mutants exhibit abnormal branching of the stalk and vesicle. These results suggest that sepA interacts with the actin cytoskeleton to promote formation of the actin ring during cytokinesis and that sepA is also required for maintenance of cellular polarity during hyphal growth and asexual morphogenesis.  相似文献   

3.
S D Harris  J E Hamer 《The EMBO journal》1995,14(21):5244-5257
In Aspergillus nidulans conidia, cytokinesis (septation) is delayed until three rounds of nuclear division have been completed. This has permitted the identification of essential genes that are involved in the coordination of cytokinesis with nuclear division. Conditional mutations in the sepB gene block septation but allow germinating spores to complete the first three rounds of nuclear division at restrictive temperature. sepB3 mutants demonstrate transient delays in M-phase, accumulate aneuploid nuclei and show defects in chromosome segregation. Molecular analysis of the sepB gene reveals that it is essential and possesses limited similarity to the CTF4 gene of Saccharomyces cerevisiae. Using temperature-shift analysis we show that sepB is required after the first nuclear division but before the onset of cytokinesis. A failure to execute the sepB function results in a block to nuclear division and leads to cell death at a time when wild-type cells would be undergoing cytokinesis. Finally, we demonstrate that sepB is also required for the uninucleate cell divisions of developing conidiophores. Our results suggest that sepB3 mutants accumulate specific nuclear defects that do not arrest mitosis, but block the initiation of septum formation. Thus, proper chromosome segregation and a functional sepB gene are required to initiate cytokinesis.  相似文献   

4.
In the fission yeast Schizosaccharomyces pombe, septum formation and cytokinesis are dependent upon the initiation, though not the completion of mitosis. A number of cell cycle mutants which show phenotypes consistent with a defect in the regulation of septum formation have been isolated. A mutation in the S. pombe cdc16 gene leads to the formation of multiple septa without cytokinesis, suggesting that the normal mechanisms that limit the cell to the formation of a single septum in each cycle do not operate. Mutations in the S. pombe early septation mutants cdc7, cdc11, cdc14 and cdc15 lead to the formation of elongated, multinucleate cells, as a result of S phase and mitosis continuing in the absence of cytokinesis. This suggests that in these cells, the normal mechanisms which initiate cytokinesis are defective and that they are unable to respond to this by preventing further nuclear cycles. Genetic analysis has implied that the products of some of these genes may interact with that of the cdc16 gene. To understand how the processes of septation and cytokinesis are regulated and coordinated with mitosis we are studying the early septation mutants and cdc16. In this paper, we present the cloning and analysis of the cdc16 gene. Deletion of the gene shows that it is essential for cell proliferation: spores lacking a functional cdc16 gene germinate, complete mitosis and form multiple septa without undergoing cell cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the filamentous fungus, Aspergillus nidulans, multiple rounds of nuclear division occur before cytokinesis, allowing an unambiguous identification of genes required specifically for cytokinesis. As in animal cells, both an intact microtubule cytoskeleton and progression through mitosis are required for actin ring formation and contraction. The sepH gene from A. nidulans was discovered in a screen for temperature-sensitive cytokinesis mutants. Sequence analysis showed that SEPH is 42% identical to the serine-threonine kinase Cdc7p from fission yeast. Signalling through the Septation Initiation Network (SIN), which includes Cdc7p and the GTPase Spg1p, is emerging as a primary regulatory pathway used by fission yeast to control cytokinesis. A similar group of proteins comprise the Mitotic Exit Network (MEN) in budding yeast. This is the first direct evidence for the existence of a functional SIN-MEN pathway outside budding and fission yeast. In addition to SEPH, potential homologues were also identified in other fungi and plants but not in animal cells. Deletion of sepH resulted in a viable strain that failed to septate at any temperature. Interestingly, quantitative analysis of the actin cytoskeleton revealed that sepH is required for construction of the actin ring. Therefore, SEPH is distinct from its counterpart in fission yeast, in which SIN components operate downstream of actin ring formation and are necessary for ring contraction and later events of septation. We conclude that A. nidulans has components of a SIN-MEN pathway, one of which, SEPH, is required for early events during cytokinesis.  相似文献   

6.
Proteins in the Rho family are small monomeric GTPases primarily involved in polarization, control of cell division, and reorganization of cytoskeletal elements. Phylogenetic analysis of predicted fungal Rho proteins suggests that a new Rho-type GTPase family, whose founding member is Rho4 from the archiascomycete Schizosaccharomyces pombe, is involved in septation. S. pombe rho4Delta mutants have multiple, abnormal septa. In contrast to S. pombe rho4Delta mutants, we show that strains containing rho-4 loss-of-function mutations in the filamentous fungus Neurospora crassa lead to a loss of septation. Epitope-tagged RHO-4 localized to septa and to the plasma membrane. In other fungi, the steps required for septation include formin, septin, and actin localization followed by cell wall synthesis and the completion of septation. rho-4 mutants were unable to form actin rings, showing that RHO-4 is required for actin ring formation. Characterization of strains containing activated alleles of rho-4 showed that RHO-4-GTP is likely to initiate new septum formation in N. crassa.  相似文献   

7.
A temperature-sensitive Schizosaccharomyces pombe mutant, cdc16-116, has been isolated which undergoes uncontrolled septation during its cell division cycle. The mutant accumulates two types of cells after 3 h of growth at the restrictive temperature: (i) type I cells (85% of the population), which complete nuclear division and then form up to five septa between the divided nuclei; and (ii) type II cells (15% of the population), which form an asymmetrically situated septum in the absence of any nuclear division. cdc16-116 is a monogenic recessive mutation unlinked to any previously known cdc gene of S. pombe. It is not affected in a previously reported control by which septation is dependent upon completion of nuclear division. We propose the cdc16-116 is unable to complete septum formation and proceed to cell separation and is also defective in a control which prevents the manufacture of more than one septum in each cell cycle.  相似文献   

8.
S G Kaminskyj  J E Hamer 《Genetics》1998,148(2):669-680
Aspergillus nidulans grows by apical extension of multinucleate cells called hyphae that are subdivided by the insertion of crosswalls called septa. Apical cells vary in length and number of nuclei, whereas subapical cells are typically 40 microm long with three to four nuclei. Apical cells have active mitotic cycles, whereas subapical cells are arrested for growth and mitosis until branch formation reinitiates tip growth and nuclear divisions. This multicellular growth pattern requires coordination between localized growth, nuclear division, and septation. We searched a temperature-sensitive mutant collection for strains with conditional defects in growth patterning and identified six mutants (designated hyp for hypercellular). The identified hyp mutations are nonlethal, recessive defects in five unlinked genes (hypA-hypE). Phenotypic analyses showed that these hyp mutants have aberrant patterns of septation and show defects in polarity establishment and tip growth, but they have normal nuclear division cycles and can complete the asexual growth cycle at restrictive temperature. Temperature shift analysis revealed that hypD and hypE play general roles in hyphal morphogenesis, since inactivation of these genes resulted in a general widening of apical and subapical cells. Interestingly, loss of hypA or hypB function lead to a cessation of apical cell growth but activated isotropic growth and mitosis in subapical cells. The inferred functions of hypA and hypB suggest a mechanism for coordinating apical growth, subapical cell arrest, and mitosis in A. nidulans.  相似文献   

9.
We analyzed the development of multiple septa in elongated multinucleated cells (hyphae) of the filamentous ascomycete Ashbya gossypii in which septation is apparently uncoupled from nuclear cycles. A key player for this compartmentalization is the PCH protein Hof1. Hyphae that are lacking this protein form neither actin rings nor septa but still elongate at wild-type speed. Using in vivo fluorescence microscopy, we present for the first time the coordination of cytokinesis and septation in multiseptated and multinucleated cells. Hof1, the type II myosin Myo1, the landmark protein Bud3, and the IQGAP Cyk1 form collars of cortical bars already adjacent to hyphal tips, thereby marking the sites of septation. While hyphae continue to elongate, these proteins gradually form cortical rings. This bar-to-ring transition depends on Hof1 and Cyk1 but not Myo1 and is required for actin ring assembly. The Fes/CIP4 homology (FCH) domain of Hof1 ensures efficient localization of Hof1, whereas ring integrity is conferred by the Src homology 3 (SH3) domain. Up to several hours after site selection, actin ring contraction leads to membrane invagination and subsequent cytokinesis. Simultaneously, a septum forms between the adjacent hyphal compartments, which do not separate. During evolution, A. gossypii lost the homologs of two enzymes essential for cell separation in Saccharomyces cerevisiae.  相似文献   

10.
Cell wall structures that partition membrane-bound portions of cytoplasm were formed at sites along the peripheral wall when a cytokinesis-defective cell division cycle mutant (cdc3) of Saccharomyces cerevisiae was grown at a restrictive temperature. The appearance of these structures, as observed in electron micrographs, was similar to that of normal septa. Aberrant septa were also detected in cytokinesis mutants harboring mutations cdc10, cdc11, and cdc12, after growth at 37 degrees C. Formation of the abnormal septa was abolished by the introduction, in a cdc3-containing strain, of additional cell cycle mutations that precluded events leading to cytokinesis and cell division. These results showed that septum formation can occur in the absence of cytokinesis. Formation of the abnormal structures was controlled by the same sequences of cell cycle events as formation of normal septa but was not subject to the spatial controls that ensure association of the septum with the budding site.  相似文献   

11.
The ts1 division initiation mutation of Bacillus subtilis 160 was transferred into a thymine-requiring strain of B. subtilis 168. Aspects of the role and timing of the action of the ts1 gene product in relation to septum formation were studied by comparing the behavior of this new strain with that of the isogenic wild type after outgrowth of germinated spores. The ts1 gene product was shown to be required for the asymmetric division which occurs in the absence of chromosome replication, in addition to normal division septation. The time interval between completion of the action of the ts1 gene product and initiation of the first central division septum was estimated to be less than 4 min at 34 degrees C, and it is possible that an active ts1 gene product is required until the commencement of septal growth. Recovery of septa after transfer of outgrown spores (filaments) from the nonpermissive to the permissive temperature was also examined. During recovery, septa formed at sites which were discrete fractional lengths of the filaments, with the first septum located at the most polar of these sites. The data have been interpreted in terms of the formation of potential division sites at the nonpermissive temperature and the preferred utilization, upon recovery, of the most recently formed site. Recovery of septa at the permissive temperature occurred in the absence of DNA synthesis but was blocked completely by inhibitors of RNA and protein synthesis. It is possible that the only protein synthesis required for recovery of septa is that of the ts1 gene product itself.  相似文献   

12.
Schizosaccharomyces pombe is an excellent organism in which to study cytokinesis as it divides by medial fission using an F-actin contractile ring. To enhance our understanding of the cell division process, a large genetic screen was carried out in which 17 genetic loci essential for cytokinesis were identified, 5 of which are novel. Mutants identifying three genes, rng3(+), rng4(+), and rng5(+), were defective in organizing an actin contractile ring. Four mutants defective in septum deposition, septum initiation defective (sid)1, sid2, sid3, and sid4, were also identified and characterized. Genetic analyses revealed that the sid mutants display strong negative interactions with the previously described septation mutants cdc7-24, cdc11-123, and cdc14-118. The rng5(+), sid2(+), and sid3(+) genes were cloned and shown to encode Myo2p (a myosin heavy chain), a protein kinase related to budding yeast Dbf2p, and Spg1p, a GTP binding protein that is a member of the ras superfamily of GTPases, respectively. The ability of Spg1p to promote septum formation from any point in the cell cycle depends on the activity of Sid4p. In addition, we have characterized a phenotype that has not been described previously in cytokinesis mutants, namely the failure to reorganize actin patches to the medial region of the cell in preparation for septum formation.  相似文献   

13.
The effects of glucose and of a pectic substrate in the duplication cycle, spore polarization and septation of Aspergillus nidulans were tested in poor and rich media. Growth on poor conditions and on sodium polypectate slowed nuclear duplication and reduced the coupling of polarization to mitosis. Coupling of septation to the third mitosis was also reduced by changing growth conditions. When protein kinase A (PKA) and protein kinase C (PKC) activators were added to the media the results suggested a role for PKA in slowing the duplication cycle, while allowing polarization. Addition of a PKC activator to poor media uncoupled the first septum formation from the third mitosis in a carbon source-regulated manner, suggesting a role for PKC in coordinating cell cycle signals, growth and cytokinesis.  相似文献   

14.
Filamentous fungi form multicellular hyphae that are partitioned by septa. In A. nidulans, septum formation requires the assembly of a septal band following the completion of mitosis. Recent observations show that this band is a dynamic structure composed of actin, a septin and a formin. In addition, assembly is dependent upon a conserved protein kinase cascade that regulates mitotic exit and septation in yeast. Hyphal differentiation may reflect the regulation of this cascade by cyclin-dependent kinase activity. In this review, the dynamics and regulation underlying the assembly of the septal band are discussed.  相似文献   

15.
Mutation of the Schizosaccharomyces pombe cdc7 gene prevents formation of the division septum and cytokinesis. We have cloned the cdc7 gene and show that it encodes a protein kinase which is essential for cell division. In the absence of cdc7 function, spore germination, DNA synthesis and mitosis are unaffected, but cells are unable to initiate formation of the division septum. Overexpression of p120cdc7 causes cell cycle arrest; cells complete mitosis and then undergo multiple rounds of septum formation without cell cleavage. This phenotype, which is similar to that resulting from inactivation of cdc16 protein, requires the kinase activity of p120cdc7. Mutations inactivating the early septation gene, cdc11, suppress the formation of multiple septa and allow cells to proliferate normally. If formation of the division septum is prevented by inactivation of either cdc14 or cdc15, p120cdc7 overproduction does not interfere with other events in the mitotic cell cycle. Septation is not induced by overexpression of p120cdc7 in G2 arrested cells, indicating that it does not bypass the normal dependency of septation upon initiation of mitosis. These findings indicate that the p120cdc7 protein kinase plays a key role in initiation of septum formation and cytokinesis in fission yeast and suggest that p120cdc7 interacts with the cdc11 protein in the control of septation.  相似文献   

16.
Analysis of Schizosaccharomyces pombe mutants that are defective in septum formation and cytokinesis has identified the product of the cdc15 gene as a key element in formation of a division septum. S. pombe cells lacking cdc15p function cannot assemble a functional medial ring, and do not make a division septum. cdc15 mRNA accumulates periodically during the cell cycle, peaking after entry into mitosis, and increased expression of the gene in G2-arrested cells can promote F-actin ring formation. Here, we have investigated the effects of mutations that block cell division upon the expression of cdc15 in synchronised cell populations, and analysed the expression of cdc15 when septum formation is induced by ectopic activation of the septation signalling network. We concluded the following: (i) the septation signalling network genes are not required for periodic accumulation of cdc15 mRNA; (ii) induction of septum formation in G2-arrested cells by activation of the septation signalling network does not result in accumulation of cdc15 mRNA, which is therefore not a prerequisite for septum formation; (iii) failure to turn off septum formation at the end of mitosis results in continued expression of cdc15; and (iv) periodic accumulation of cdc15 mRNA is mediated by a 97 bp region 5' to the mRNA start site.  相似文献   

17.
The class II and class I chitin synthases of the filamentous fungus Aspergillus nidulans are encoded by chsA and chsC, respectively. Previously, we presented several lines of evidence suggesting that ChsA and ChsC have overlapping functions in maintaining cell wall integrity. In order to determine the functions of these chitin synthases, we employed electron and fluorescence microscopy and investigated in detail the cell wall of a DeltachsA DeltachsC double mutant (DeltaAC mutant) along with the localization of ChsA and ChsC. In the lateral cell wall of the DeltaAC mutant, electron-transparent regions were thickened. Septa of the DeltaAC mutant were aberrantly thick and had a large pore. Some septa were located abnormally close to adjacent septa. A functional hemagglutinin (HA)-tagged ChsA (HA-ChsA) and a functional FLAG-tagged ChsC (FLAG-ChsC) were each localized to a subset of septation sites. Comparison with the localization pattern of actin, which is known to localize at forming septa, suggested that ChsA and ChsC transiently exist at the septation sites during and shortly after septum formation. Double staining of HA-ChsA and FLAG-ChsC indicated that their localizations were not identical but partly overlapped at the septation sites. Fluorescence of FLAG-ChsC, but not of HA-ChsA, was also observed at hyphal tips. These data indicate that ChsA and ChsC share overlapping roles in septum formation.  相似文献   

18.
To infect plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we report that appressorium development in the rice blast fungus Magnaporthe oryzae involves an unusual cell division, in which nuclear division is spatially uncoupled from the site of cytokinesis and septum formation. The position of the appressorium septum is defined prior to mitosis by formation of a heteromeric septin ring complex, which was visualized by spatial localization of Septin4:green fluorescent protein (GFP) and Septin5:GFP fusion proteins. Mitosis in the fungal germ tube is followed by long-distance nuclear migration and rapid formation of an actomyosin contractile ring in the neck of the developing appressorium, at a position previously marked by the septin complex. By contrast, mutants impaired in appressorium development, such as Δpmk1 and ΔcpkA regulatory mutants, undergo coupled mitosis and cytokinesis within the germ tube. Perturbation of the spatial control of septation, by conditional mutation of the SEPTATION-ASSOCIATED1 gene of M. oryzae, prevented the fungus from causing rice blast disease. Overexpression of SEP1 did not affect septation during appressorium formation, but instead led to decoupling of nuclear division and cytokinesis in nongerminated conidial cells. When considered together, these results indicate that SEP1 is essential for determining the position and frequency of cell division sites in M. oryzae and demonstrate that differentiation of appressoria requires a cytokinetic event that is distinct from cell divisions within hyphae.  相似文献   

19.
20.
Members of the septin family of proteins act as organizational scaffolds in areas of cell division and new growth in a variety of organisms. Herein, we show that in the filamentous fungus Aspergillus nidulans, the septin AspB is important for cellular division, branching, and conidiation both pre- and postmitotically. AspB localizes postmitotically to the septation site with an underlying polarity that is evident as cytokinesis progresses. This localization at the septation site is dependent on actin and occurs before the cross-wall is visible. AspB localizes premitotically as a ring at sites of branching and secondary germ tube emergence. It is the only known branch site marker. In addition, AspB is found at several stages during the development of the asexual reproductive structure, the conidiophore. It localizes transiently to the vesicle/metula and metula/phialide interfaces, and persistently to the phialide/conidiospore interface. A temperature-sensitive mutant of AspB shows phenotypic abnormalities, including irregular septa, high numbers of branches, and immature asexual reproductive structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号