首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cDNA encoding the protein (P46) that is mutated in glycogen storage disease type-1b (GSD-1b) has been previously cloned by homology with bacterial sequences of the uhp (upper hexose phosphate) system. Hydropathic profiles, transmembrane-prediction analysis, and a multiple alignment of 14 sequences related to P46 (with percentage of identity around 30%) allowed to identify two large domains in the proteins linked by a large variable loop. Highly conserved transmembrane (TM) segments, TM1 and TM4 in the first domain and TM5 in the second one, were identified almost in all the integral proteins related to P46. The multiple alignment allowed definition of a consensus involving the 14 sequences related to P46. The detailed comparison of the consensus with the UhpT (the bacterial G6P transporter) and with UhpC (the bacterial G6P receptor) sequences reveals that the P46 protein could carry both G6P receptor and transporter functions.  相似文献   

3.
4.
5.
6.
The amino acid sequence of the proposed glucose-6-phosphate (Glc6P) transporter from Chlamydia pneumoniae (HPTcp; hexose phosphate transporter [Chlamydia pneumoniae]) exhibits a higher degree of similarity to the Escherichia coli Glc6P sensor (UhpC) than to the E. coli Glc6P transporter (UhpT). Overexpression of His-UhpC in a UhpT-deficient E. coli strain revealed that the sensor protein is also able to transport Glc6P and exhibits an apparent K(m) ((Glc6P)) of 25 microM, whereas His-HPTcp exhibits an apparent K(m)( (Glc6P)) of 98 microM. His-HPTcp showed a four-times-lower specific activity than His-UhpT but a 56-times-higher specific activity than His-UhpC. Like His-UhpT and His-UhpC, the carrier His-HPTcp performs a sugar-phosphate/inorganic-phosphate antiporter mode of transport. Surprisingly, while physiological concentrations of inorganic phosphate competitively inhibited transport mediated by the E. coli proteins His-UhpT and His-UhpC, transport mediated by His-HPTcp was not inhibited. Interestingly, C(3)-organophosphates stimulated His-HPTcp activity but not His-UhpT- or His-UhpC-catalyzed Glc6P transport. In contrast to His-UhpC, the His-HPTcp protein does not act as a Glc6P sensor in the uhp regulon.  相似文献   

7.
The phoM gene is one of the positive regulatory genes for the phosphate regulon of Escherichia coli. We analyzed the nucleotide sequence of a 4.7-kilobase chromosomal DNA segment that encompasses the phoM gene and its flanking regions. Four open reading frames (ORFs) were identified in the order ORF1-ORF2-ORF3 (phoM)-ORF4-dye clockwise on the standard E. coli genetic map. Since these ORFs are preceded by a putative promotor sequence upstream of ORF1 and followed by a putative terminator distal to ORF4, they seem to constitute an operon. The 157-amino-acid ORF1 protein contains highly hydrophobic amino acids in the amino-terminal portion, which is a characteristic of a signal peptide. The 229-amino-acid ORF2 protein is highly homologous to the PhoB protein, a positive regulatory protein for the phosphate regulon. The ORF3 (phoM gene) protein contains two stretches of highly hydrophobic residues in the amino-terminal and central regions and, therefore, may be a membrane protein. The 450-amino-acid ORF4 protein contains long hydrophobic regions and is likely to be a membrane protein.  相似文献   

8.
We describe the determination of the nucleotide sequence of two genes (pgtB and pgtC) contained within the 3.4-kilobase DNA segment sandwiched between the transporter gene, pgtP, and the regulatory gene, pgtA. These two genes are involved in the regulation of expression of phosphoglycerate transport in Salmonella typhimurium. The sequence indicates the presence of two large open reading frames, potentially coding for two polypeptides of 397 and 593 amino acid residues. The two gene products were identified by using the bacteriophage T7 RNA polymerase-T7 promoter coupled system of Tabor and Richardson, and the observed apparent mass of 45 and 69 kilodaltons correlated well with the respective open reading frames. The cellular location of these two polypeptides was directly determined, and the polypeptides were found to be associated with the membrane. Although overall these polypeptides appear to be hydrophilic, there is one hydrophobic transmembrane segment in the smaller polypeptide and four such segments in the larger polypeptide which can account for their association with the membrane. In the accompanying paper, we present genetic evidence that pgtB and pgtC genes are involved in the induction of the pgtP expression by modulating derepressor activity.  相似文献   

9.
UhpC is a membrane-bound sensor protein in Escherichia coli required for recognizing external glucose-6-phosphate (Glc6P) and induction of the transport protein UhpT. Recently, it was shown that UhpC is also able to transport Glc6P. In this study we investigated whether these transport and sensing activities are obligatorily coupled in UhpC. We expressed a His-UhpC protein in a UhpC-deficient E. coli strain and verified that this construct does not alter the basic biochemical properties of the Glc6P sensor system. The effects of arginine replacements, mutations of the central loop, and introduction of a salt bridge in UhpC on transport and sensing were compared. The exchanges R46C, R266C and R149C moderately affected transport by UhpC but strongly decreased the sensing ability. This suggested that the affinity for Glc6P as a transported substrate is uncoupled in UhpC from its affinity for Glc6P as an inducer. Four of the 11 arginine mutants showed a constitutive phenotype but had near wild-type transport activity suggesting that Glc6P can be transported by a molecule locked in the inducing conformation. Introduction of an intrahelical salt bridge increased the transport activity of UhpC but abolished sensing. Three conserved residues from the central loop were mutated and although none of these showed transport, one exhibited increased affinity for sensing. Taken together, these data show that transport by UhpC is not required for sensing, that conserved arginine residues are important for sensing and not for transport, and that residues located in the central hydrophilic loop are critical for transport and for sensing.  相似文献   

10.
The nucleotide sequence of the melB gene coding for the melibiose carrier in Escherichia coli has been determined. The melibiose carrier is predicted to consist of 469 amino acid residues, resulting in a protein with a molecular weight of 52,029. The predicted carrier protein is highly hydrophobic (70% nonpolar amino acid residues). The hydropathic profile suggests that there are 10 long hydrophobic segments in the primary structure of the carrier protein. Most of them seem to traverse the membrane. Although the hydropathic profile of the melibiose carrier is similar to that of the lactose carrier as a whole, homology in the primary structure between the two carriers is very low. Furthermore, no homology in the nucleotide sequence is found in the structural genes for the two carriers. However, the nucleotide sequences of the intergenic regions are very similar between the melibiose operon and the lactose operon. There is a typical intercistronic regulatory sequence in the 3'-flanking region of the melB as well as in that of the lacY, which suggests the presence of another gene downstream of the melB.  相似文献   

11.
K Inatomi 《DNA research》1998,5(6):365-371
The structural gene, nosZ, for the monomeric N2O reductase has been cloned and sequenced from the denitrifying bacterium Achromobacter cycloclastes. The nosZ gene encodes a protein of 642 amino acid residues and the deduced amino acid sequence showed homology to the previously derived sequences for the dimeric N2O reductases. The relevant DNA region of about 3.6 kbp was also sequenced and found to consist of four genes, nosDFYL based on the similarity with the N2O reduction genes of Pseudomonas stutzeri. The gene product of A. cycloclastes nosF (299 amino acid residues) has a consensus ATP-binding sequence, and the nos Y gene encodes a hydrophobic protein (273 residues) with five transmembrane segments, suggesting the similarity with an ATP-binding cassette (ABC) transporter which has two distinct domains of a highly hydrophobic region and ATP-binding sites. The nosL gene encodes a protein of 193 amino acid residues and the derived sequence showed a consensus sequence of lipoprotein modification/processing site. The expression of nosZ gene in Escherichia coli cells and the comparison of the translated sequences of the nosDFYL genes with those of bacterial transport genes for inorganic ions are discussed.  相似文献   

12.
A 1.8 kb HindIII DNA fragment containing the secY gene of alkalophilic Bacillus sp. C125 has been cloned into plasmid pUC119 using the B. subtilis secY gene as a probe. The complete nucleotide sequence of the cloned DNA indicated that it contained one complete ORF and parts of two other ORFs. The similarity of these ORFs to the sequences of the B. subtilis proteins indicated that they were the genes for ribosomal protein L15-SecY-adenylate kinase, in that order. The gene product of the alkalophilic Bacillus sp. C125 secY homologue was composed of 431 amino acids and its M(r) value has been calculated to be 47,100. The distribution of hydrophobic amino acids in the gene product suggested that the protein was a membrane integrated protein with ten transmembrane segments. The total amino acid sequence of alkalophilic Bacillus sp. C125 secY homologue showed 69.7% homology with that of B. subtilis secY. Regions of remarkably high homology (78% identity) were present in transmembrane regions, and cytoplasmic domains (73% identity) with less homologous regions present in extracellular domains (43% identity).  相似文献   

13.
The products of the btuCED region of the Escherichia coli chromosome participate in the transport of vitamin B12 across the cytoplasmic membrane. The nucleotide sequence of the 3,410-base-pair HindIII-HincII DNA fragment carrying a portion of the himA gene and the entire btuCED region was determined. Comparison of the location of the open reading frames with the gene boundaries defined by transposon insertions allowed the assignment of polypeptide products to gene sequences. The btuC product is a highly nonpolar integral membrane protein of molecular weight 31,683. The distribution of hydrophobic regions suggests the presence of numerous membrane-spanning domains. The btuD product is a relatively polar but membrane-associated polypeptide of Mr 27,088 and contains segments bearing extensive homology to the ATP-binding peripheral membrane constituents of periplasmic binding protein-dependent transport systems. Other regions of this protein are similar to portions of the outer membrane vitamin B12 receptor. The btuE product (Mr 20,474) appears to have a periplasmic location. It has the mean hydropathy of a soluble protein but lacks an obvious signal sequence. The cellular locations and structural and sequence homologies of the Btu polypeptides point to the similarity of these three proteins to components of binding protein-dependent transport systems. However, the dependence on a periplasmic vitamin B12-binding protein has not yet been demonstrated.  相似文献   

14.
15.
16.
Isolation and structure of a rhodopsin gene from D. melanogaster   总被引:45,自引:0,他引:45  
C S Zuker  A F Cowman  G M Rubin 《Cell》1985,40(4):851-858
Using a novel method for detecting cross-homologous nucleic acid sequences we have isolated the gene coding for the major rhodopsin of Drosophila melanogaster and mapped it to chromosomal region 92B8-11. Comparison of cDNA and genomic DNA sequences indicates that the gene is divided into five exons. The amino acid sequence deduced from the nucleotide sequence is 373 residues long, and the polypeptide chain contains seven hydrophobic segments that appear to correspond to the seven transmembrane segments characteristic of other rhodopsins. Three regions of Drosophila rhodopsin are highly conserved with the corresponding domains of bovine rhodopsin, suggesting an important role for these polypeptide regions.  相似文献   

17.
18.
The nucleotide sequence of 5'-noncoding and N-terminal coding regions of two coordinately regulated, repressible acid phosphatase genes from Saccharomyces cerevisiae were determined. These unlinked genes encode different, but structurally related polypeptides of molecular weights 60,000 and 56,000. The DNA sequences of their 5'-flanking regions show stretches of extensive homology upstream of, and surrounding, a "TATA" sequence and in a region in which heterogeneous 5' ends of the p60 mRNA were mapped. The predicted amino acid sequences encoded by the N-terminal regions of both genes were confirmed by determination of the amino acid sequence of the native exocellular acid phosphatase and the partial sequence of the presecretory polypeptide synthesized in a cell-free protein synthesizing system. The N-terminal region of the p60 polypeptide was shown to be characterized by a hydrophobic 17-amino acid signal polypeptide which is absent in the native exocellular protein and thought to be necessary for acid phosphatase secretion.  相似文献   

19.
The HXT2 gene of the yeast Saccharomyces cerevisiae was identified on the basis of its ability to complement the defect in glucose transport of a snf3 mutant when present on the multicopy plasmid pSC2. Analysis of the DNA sequence of HXT2 revealed an open reading frame of 541 codons, capable of encoding a protein of Mr 59,840. The predicted protein displayed high sequence and structural homology to a large family of procaryotic and eucaryotic sugar transporters. These proteins have 12 highly hydrophobic regions that could form transmembrane domains; the spacing of these putative transmembrane domains is also highly conserved. Several amino acid motifs characteristic of this sugar transporter family are also present in the HXT2 protein. An hxt2 null mutant strain lacked a significant component of high-affinity glucose transport when under derepressing (low-glucose) conditions. However, the hxt2 null mutation did not incur a major growth defect on glucose-containing media. Genetic and biochemical analyses suggest that wild-type levels of high-affinity glucose transport require the products of both the HXT2 and SNF3 genes; these genes are not linked. Low-stringency Southern blot analysis revealed a number of other sequences that cross-hybridize with HXT2, suggesting that S. cerevisiae possesses a large family of sugar transporter genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号