首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B chromosomes and genome size in flowering plants.   总被引:2,自引:0,他引:2  
B chromosomes are extra chromosomes found in some, but not all, individuals within a species, often maintained by giving themselves an advantage in transmission, i.e. they drive. Here we show that the presence of B chromosomes correlates to and varies strongly and positively with total genome size (excluding the Bs and corrected for ploidy) both at a global level and via a comparison of independent taxonomic contrasts. B chromosomes are largely absent from species with small genomes; however, species with large genomes are studied more frequently than species with small genomes and Bs are more likely to be reported in well-studied species. We controlled for intensity of study using logistic regression. This regression analysis also included effects of degree of outbreeding, which is positively associated with Bs and genome size, and chromosome number, which is negatively associated with Bs and genome size, as well as variable ploidy (more than one ploidy level in a species). Genome size, breeding system and chromosome number all contribute independently to the distribution of B chromosomes, while variable ploidy does not have a significant effect. The genome size correlates are consistent with reduced selection against extra DNA in species with large genomes and with increased generation of B sequences from large A genomes.  相似文献   

2.

Background  

Three complete genomes of Prochlorococcus species, the smallest and most abundant photosynthetic organism in the ocean, have recently been published. Comparative genome analyses reveal that genome shrinkage has occurred within this genus, associated with a sharp reduction in G+C content. As all examples of genome reduction characterized so far have been restricted to endosymbionts or pathogens, with a host-dependent lifestyle, the observed genome reduction in Prochlorococcus is the first documented example of such a process in a free-living organism.  相似文献   

3.

Background

Three complete genomes of Prochlorococcus species, the smallest and most abundant photosynthetic organism in the ocean, have recently been published. Comparative genome analyses reveal that genome shrinkage has occurred within this genus, associated with a sharp reduction in G+C content. As all examples of genome reduction characterized so far have been restricted to endosymbionts or pathogens, with a host-dependent lifestyle, the observed genome reduction in Prochlorococcus is the first documented example of such a process in a free-living organism.

Results

Our results clearly indicate that genome reduction has been accompanied by an increased rate of protein evolution in P. marinus SS120 that is even more pronounced in P. marinus MED4. This acceleration has affected every functional category of protein-coding genes. In contrast, the 16S rRNA gene seems to have evolved clock-like in this genus. We observed that MED4 and SS120 have lost several DNA-repair genes, the absence of which could be related to the mutational bias and the acceleration of amino-acid substitution.

Conclusions

We have examined the evolutionary mechanisms involved in this process, which are different from those known from host-dependent organisms. Indeed, most substitutions that have occurred in Prochlorococcus have to be selectively neutral, as the large size of populations imposes low genetic drift and strong purifying selection. We assume that the major driving force behind genome reduction within the Prochlorococcus radiation has been a selective process favoring the adaptation of this organism to its environment. A scenario is proposed for genome evolution in this genus.  相似文献   

4.
Summary We describe extensive variation in the morphology and number of small marker chromosomes in a young girl whose most significant clinical findigns were pulmonic stenosis, neek webbing, proptosis, camptodactyly, and developmental delay. Many of the markers had a ring structure. Some were clearly rod-shaped chromosomes with varying arm ratios and others were so small that we could not determine their structure.  相似文献   

5.
The present study examines chromosome and genome size evolution in Luzula (woodrush; Juncaceae), a monocot genus with holocentric chromosomes. Detailed karyotypes and genome size estimates were obtained for seven Luzula spp., and these were combined with additional data from the literature to enable a comprehensive cytological analysis of the genus. So that the direction of karyotype and genome size changes could be determined, the cytological data were superimposed onto a phylogenetic tree based on the trnL‐F and internal transcribed spacer (ITS) DNA regions. Overall, Luzula shows considerable cytological variation both in terms of chromosome number (2n = 6–66) and genome size (15‐fold variation; 2C = 0.56–8.51 pg; 547.7–8322.8 Mb). In addition, there is considerable diversity in the genomic mechanisms responsible, with the range of karyotypes arising via agmatoploidy (chromosome fission), symploidy (chromosome fusion) and/or polyploidy accompanied, in some cases, by the amplification or elimination of DNA. Viewed in an evolutionary framework, no broad trend in karyotype or genome evolution was apparent across the genus; instead, different mechanisms of karyotype evolution appear to be operating in different clades. It is clear that Luzula exhibits considerable genomic flexibility and tolerance to large, genome‐scale changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 529–541.  相似文献   

6.
GC-biased gene conversion (gBGC) is a recombination-associated evolutionary process that accelerates the fixation of guanine or cytosine alleles, regardless of their effects on fitness. gBGC can increase the overall rate of substitutions, a hallmark of positive selection. Many fast-evolving genes and noncoding sequences in the human genome have GC-biased substitution patterns, suggesting that gBGC-in contrast to adaptive processes-may have driven the human changes in these sequences. To investigate this hypothesis, we developed a substitution model for DNA sequence evolution that quantifies the nonlinear interacting effects of selection and gBGC on substitution rates and patterns. Based on this model, we used a series of lineage-specific likelihood ratio tests to evaluate sequence alignments for evidence of changes in mode of selection, action of gBGC, or both. With a false positive rate of less than 5% for individual tests, we found that the majority (76%) of previously identified human accelerated regions are best explained without gBGC, whereas a substantial minority (19%) are best explained by the action of gBGC alone. Further, more than half (55%) have substitution rates that significantly exceed local estimates of the neutral rate, suggesting that these regions may have been shaped by positive selection rather than by relaxation of constraint. By distinguishing the effects of gBGC, relaxation of constraint, and positive selection we provide an integrated analysis of the evolutionary forces that shaped the fastest evolving regions of the human genome, which facilitates the design of targeted functional studies of adaptation in humans.  相似文献   

7.
8.
9.
10.
11.

Background  

Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae) remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta), and the two published estimates for this species differ by 146.7 Mb (0.15 pg).  相似文献   

12.
Bats play important roles as pollen disseminators and pest predators. However, recent interest has focused on their role as natural reservoirs of pathogens associated with emerging infectious diseases. Prior to the outbreak of severe acute respiratory syndrome (SARS), about 60 bat virus species had been reported. The number of identified bat viruses has dramatically increased since the initial SARS outbreak, and most are putative novel virus species or genotypes. Serious infectious diseases caused by previously identified bat viruses continue to emerge throughout in Asia, Australia, Africa and America. Intriguingly, bats infected by these different viruses seldom display clinical symptoms of illness. The pathogenesis and potential threat of bat-borne viruses to public health remains largely unknown. This review provides a brief overview of bat viruses associated with emerging human infectious diseases.  相似文献   

13.
Amebas contain 7 electrophoretically distinct species of small nuclear RNAs (snRNAs), some of which are known to associate in a striking manner with mitotic chromosomes. These RNAs can be divided into 2 classes, one consisting of 4 snRNA species that shuttle in a non-random way between nucleus and cytoplasm during interphase and one consisting of 3 snRNA species that do not leave the nucleus at all during interphase. In the work reported here we sought to determine which class is associated with mitotic chromosomes. Through a series of micromanipulative procedures we arranged for the shuttling snRNAs to be the only radioactive molecules in the cell. Such cells were allowed to enter mitosis, whereupon they were fixed and subjected to autoradiography. In those cells no radioactive snRNAs were found associated with mitotic chromosomes. It is concluded, therefore, that those snRNAs that do associate with mitotic chromosomes must be one or more of the non-shuttling species. — In the Discussion, how the non-shuttling snRNAs may function in cell activities is considered.  相似文献   

14.
The two living groups of flying vertebrates, birds and bats, both have constricted genome sizes compared with their close relatives. But nothing is known about the genomic characteristics of pterosaurs, which took to the air over 70 Myr before birds and were the first group of vertebrates to evolve powered flight. Here, we estimate genome size for four species of pterosaurs and seven species of basal archosauromorphs using a Bayesian comparative approach. Our results suggest that small genomes commonly associated with flight in bats and birds also evolved in pterosaurs, and that the rate of genome-size evolution is proportional to genome size within amniotes, with the fastest rates occurring in lineages with the largest genomes. We examine the role that drift may have played in the evolution of genome size within tetrapods by testing for correlated evolution between genome size and body size, but find no support for this hypothesis. By contrast, we find evidence suggesting that a combination of adaptation and phylogenetic inertia best explains the correlated evolution of flight and genome-size contraction. These results suggest that small genome/cell size evolved prior to or concurrently with flight in pterosaurs. We predict that, similar to the pattern seen in theropod dinosaurs, genome-size contraction preceded flight in pterosaurs and bats.  相似文献   

15.
16.
We present a strategy for assembling a physical map of the genome of Drosophila melanogaster based on yeast artificial chromosomes (YACs). In this paper we report 500 YACs containing inserts of Drosophila DNA averaging 200 kb that have been assigned positions on the physical map by means of in situ hybridization with salivary gland chromosomes. The cloned DNA fragments have randomly sheared ends (DY clones) or ends generated by partial digestion with either NotI (N clones) or EcoRI (E clones). Relative to the euchromatic portion of the genome, the size distribution and genomic positions of the clones reveal no significant bias in the completeness or randomness of genome coverage. The 500 mapped euchromatic clones contain an aggregate of approximately 100 million base pairs of DNA, which is approximately one genome equivalent of Drosophila euchromatin.by W. Hennig  相似文献   

17.
18.
Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.  相似文献   

19.
Lampbrush chromosome 11 from the newtTaricha granulosa was studied by scanning electron microscopy (SEM) to determine the size of all loops in this bivalent. Measurements with an XY digitizer revealed a mean loop length of 14.9 µm, with a large standard deviation and a skewed distribution toward higher values. The size of the loops at this stage of diplotene extension is similar to that reported in other eukaryotes studies with different approaches. We estimated, from the DNA content of chromosome 11, that between 0.4% and 2.2% of the DNA is found in the loops while the rest of the DNA must remain in the compact chromomeres.  相似文献   

20.
In order to reassess previous hypotheses concerning dental size reduction of the posterior teeth during Pleistocene human evolution, current fossil dental evidence is examined. This evidence includes the large sample of hominid teeth found in recent excavations (1984–1993) in the Sima de los Huesos Middle Pleistocene cave site of the Sierra de Atapuerca (Burgos, Spain). The lower fourth premolars and molars of the Atapuerca hominids, probably older than 300 Kyr, have dimensions similar to those of modern humans. Further, these hominids share the derived state of other features of the posterior teeth with modern humans, such as a similar relative molar size and frequent absence of the hypoconulid, thus suggesting a possible case of parallelism. We believe that dietary changes allowed size reduction of the posterior teeth during the Middle Pleistocene, and the present evidence suggests that the selective pressures that operated on the size variability of these teeth were less restrictive than what is assumed by previous models of dental reduction. Thus, the causal relationship between tooth size decrease and changes in food-preparation techniques during the Pleistocene should be reconsidered. Moreover, the present evidence indicates that the differential reduction of the molars cannot be explained in terms of restriction of available growth space. The molar crown area measurements of a modern human sample were also investigated. The results of this study, as well as previous similar analyses, suggest that a decrease of the rate of cell proliferation, which affected the later-forming crown regions to a greater extent, may be the biological process responsible for the general and differential dental size reduction that occurred during human evolution. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号