首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At onset of egg-laying in the chicken, plasma levels of apolipoprotein VLDL-II (apoII) increase dramatically, suggesting a function of apoII in yolk deposition of triglyceride-rich lipoproteins. Thus, the possibility that this female-specific homodimeric protein (Mr of subunit, 9500) is recognized by the oocyte receptor for low and very low density lipoproteins was investigated. ApoII was purified from very low density lipoproteins by a novel, rapid procedure and reconstituted with egg phosphatidylcholine (PC) by detergent-dialysis. The resulting discoidal apoII/PC lipoprotein particles contained 3 mg of apoII per mg of PC and had a buoyant density of 1.062 g/ml. The ability of apoII/PC, as well as of physiological particles containing apoII but devoid of apolipoprotein B (apoB), namely high density lipoproteins (HDL) from laying hens, to interact with the oocyte receptor was tested. Both of these ligands failed to show saturable high affinity binding, in contrast to the apoB-containing ligands, low and very low density lipoproteins. Furthermore, neither laying-hen HDL which contain apoII and apoA-I nor apoII/PC were able to displace receptor-bound apoB-containing lipoproteins, as shown in competitive binding assays as well as by ligand blotting. Thus, we conclude that apoB, but not apoII, participates in binding and uptake of very low density lipoproteins via receptor-mediated endocytosis by growing chicken oocytes.  相似文献   

2.
Interaction of very low density lipoprotein with chicken oocyte membranes   总被引:1,自引:0,他引:1  
The interaction of hen 125I-VLDL (very low density lipoprotein) with chicken oocyte membranes was characterized using a rapid sedimentation assay. Equilibrium and kinetic studies showed an apparent dissociation constant (Kd) 8.7-9.1 x 10(-8) M or 43.5-45.5 micrograms VLDL protein/ml. Binding capacity was 2.0 micrograms VLDL protein/mg membrane homogenate protein. The apparent rate constants were k1 = 2.4 x 10(5) M-1 min-1 and k2 = 2.1 x 10(-2) min-1. Specific binding required the presence of divalent cations. Whereas binding was completely restored after treatment with EDTA by the addition of MN++, only 60% of binding was restored using Ca++.  相似文献   

3.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

4.
5.
Triglyceride-rich lipoproteins derived from ten normo- and hyperlipidemic apoE-2 homozygotes were analyzed for their composition, beta-VLDL content, and their ability to induce cholesteryl ester storage in macrophages. In six of these probands apoE sequence analysis revealed that the cysteine residues were at positions 112 and 158 of the amino acid sequence (Rall et al. 1983. J. Clin. Invest. 71: 1023-1031). ApoE-2 of these six and the other four patients was further analyzed by SDS electrophoresis to exclude the presence of apoE-2* (Rall et al. 1982. Proc. Natl. Acad. Sci. USA. 79: 4696-4700). The relative serum concentrations of free and esterified cholesterol transported in the d less than 1.006 g/ml and d 1.006-1.019 g/ml lipoproteins of the apoE-2 homozygotes was significantly higher as compared to controls. Compositional analysis of these lipoproteins revealed a relative reduction of triglycerides and a relative increase of cholesteryl esters as compared to controls. In most patients, with increasing serum triglyceride levels the cholesteryl ester concentration increased in d less than 1.006 g/ml and d 1.006-1.019 g/ml lipoproteins. However, in three patients with a low content of beta-VLDL, the increase in the d less than 1.006 g/ml fraction cholesterol was mostly due to free cholesterol and not due to cholesteryl esters. The degree of the macrophage cholesteryl ester accumulation induced by d less than 1.006 g/ml lipoproteins was mostly dependent on the concentration of the beta-migrating fraction (beta-VLDL). The amount of beta-VLDL and pre-beta-VLDL contained in the d less than 1.006 g/ml fraction was determined densitometrically after electrophoretic separation. It could be demonstrated that the beta-VLDL content in the d less than 1.006 g/ml fraction of the apoE-2 homozygous patients was largely independent of serum triglyceride and serum cholesterol levels. When macrophages were incubated with the IDL fraction (d 1.006-1.019 g/ml) from the apoE-2 patients, no significant increase in cellular cholesteryl esters above control levels was observed. Studies with purified lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) clearly revealed that both enzymes interacted with apoE-2 VLDL (binding, hydrolysis) to a lesser degree compared to control preparations. However, the apoE-2 VLDL preparations containing a low content of beta-VLDL were better substrates for LPL and HTGL than those containing a high beta-VLDL content. It is concluded from our studies that the plasma beta-VLDL content in apoE-2 homozygotes is a major determinant for cholesteryl ester accumulation in macrophages.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The binding of lipoproteins to the oocyte plasma membrane of the domestic fowl (Gallus domesticus) was examined by electron microscopy in preparations of the ovarian follicle in the main phase of yolk formation. Numerous particles, 26 nm in diameter, were present on the untreated membrane. They were dissociated from the membrane by incubation at 4 °C in buffer at pH 6.2 and with heparin at pH 7.4. Added calcium was not required for binding, though the number of bound particles was reduced by treatment with EDTA. Very low density (VLD) lipoproteins from laying hen's plasma were found to bind to the denuded membrane and to correspond in size to the native particles. The results suggest that the binding characteristics are similar in quality to those determined for the binding of low density (LD) lipoproteins to mammalian cells. The oocytes, however, bound 100-fold more particles per unit length of membrane. VLD and LD lipoproteins from immature hens also adhered to the denuded membrane, although their apoprotein composition was very different from that of laying hen VLD lipoproteins. LD lipoproteins from immature hens and VLD lipoproteins from laying hens both contained apo-B, which formed about 80 and 35%, respectively, of the total apolipoproteins. Apo-VLDL-II is the other major apoprotein identified in laying-hen VLD lipoproteins. Apo-VLDL-II was not positively identified as a component of immature-hen LD lipoproteins and could only have been present as a minor component. Despite their great difference in apo-VLDL-II content, immature-hen LD lipoproteins and laying-hen VLD lipoproteins showed similar dissociation constants for binding to the oocyte plasma membrane. This evidence strongly suggests that the cell surface receptors recognize the B apoprotein of avian VLD lipoproteins.  相似文献   

7.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

8.
9.
Metabolism of very low density lipoproteins (VLDL) has been compared in fat (FL) and lean (LL) lines of chicken. When refed after fasting, plasma triglyceride concentration reached a significantly higher plateau in FL, although their feed consumption was lower than in LL. Newly synthesized VLDL were studied using anti-lipoprotein lipase antibodies. VLDL triglyceride (TG) concentrations were increased by antibody injection and reached a higher concentration in FL plasma than in LL. Newly synthesized VLDL exhibited a similar lipid composition. Fatty acid profiles were also similar when birds ingested a very low fat diet. Comparison of in vitro affinity of lipoprotein lipase and VLDL from both genotypes did not reveal any difference in Km and Vmax. [14C]labelled VLDL from fat or lean donors were prepared and were injected into chickens from both genotypes. Fractional rate constants did not differ between lines. However, as plasma VLDL-TG pools were very different, plasma turnover was higher in FL than in LL. About 3-fold more VLDL-TG were incorporated in abdominal fat of FL than in LL. Difference in fattening between both genotypes seem to be due to both increased VLDL secretion and VLDL removal from plasma without difference in VLDL characteristics.  相似文献   

10.
Previous analysis of amniotic fluid (AF) noted only the presence of high density lipoprotein (HDL). In this study AF lipoprotein profile was examined using gel filtration column chromatography and Ouchterlony gel diffusion. Unlike previous studies which showed only the presence of HDL, we found significant amounts of low density lipoprotein (LDL) and very low density lipoprotein (VLDL). AF-LDL and AF-VLDL were identified by reactions with anti-h-apolipoprotein AI and AII antiserum and anti-h-apolipoprotein B-antiserum, respectively. Furthermore, bulk of the cholesterol mass was carried in VLDL (53.6 +/- 7.7%) and LDL (32.5 +/- 4.3%) with minor amounts (13.9 +/- 1.3%) in HDL fraction. It is concluded that human AF contains all three lipoproteins with most of the cholesterol being carried in very low density lipoprotein fraction.  相似文献   

11.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

12.
13.
A previously unrecognized lipoprotein of very high density was isolated from rat serum. During zonal ultracentrifugation of whole serum or of fractions from Sepharose 4B chromatography, a peak comigrating with a peak of cholesterol was found between the typical high density lipoproteins and the residual serum proteins. Centrifugation of chylomicrons, very low density lipoproteins, and high density lipoproteins, radio-iodinated in their lipid and protein moieties and mixed with serum, did not yield this peak. The pooled fractions contained about 85% protein. The remainder was lipid comprising cholesteryl esters, free cholesterol, triglycerides, phosphatidylcholine, and sphingomyelin. Polyacrylamide gel electrophoresis revealed bands in the region of apolipoproteins E and C as the major components. The composition suggested a lipoprotein, and this was substantiated by electron microscopy which showed particles with a mean diameter of 150 A. Their average hydrated density was 1.23 g/ml and the apparent molecular weight was 1.35 X 10(6). These very high density lipoproteins are characterized by a rapid catabolism as compared to high density lipoproteins. Within 10 min, 84% and 70% of intravenously injected 125I-labeled very high density lipoproteins were removed from plasma of male and female rats, respectively, and did not appear to be converted to lipoproteins of a different density class. Ninety-five percent of the removed 125I was recovered in the liver and the radioactivity per gram of tissue was also highest for the liver. Accordingly, the rate of clearance of 125I-labeled very high density lipoproteins was markedly reduced in functionally eviscerated rats. Radioautography revealed that most of the silver grains representing very high density lipoproteins were associated with hepatocytes and only about 1% was found over v. Kupffer cells. Uptake and degradation by freshly isolated rat hepatocytes were mediated by a saturable and specific binding site. Composition and metabolic pathway are compatible with a function of very high density lipoproteins in the transport of protein and lipids to the liver.  相似文献   

14.
An exponential gradient gel with 0-10% acrylamide and 0.5% agarose was developed for electrophoresis of intact high molecular weight lipoproteins. This system resolves very low density lipoproteins, intermediate density lipoproteins, lipoprotein a, and low density lipoproteins in a size-dependent fashion. The characteristic relative mobility of these species can be determined in relation to protein and colloidal gold reference materials. Electron microscopy of selected lipoprotein fractions confirmed that relative mobility was related to apparent lipoprotein diameter. The composite gel medium can be used with prestained lipoproteins and permits immunoelectroblotting for qualitative analysis of apolipoprotein constituents.  相似文献   

15.
Human plasma lipoproteins, fractionated by density gradient ultracentrifugation, and very low density lipoproteins, subfractionated by cumulative rate centrifugation, were subjected to agarose isoelectric focusing in small format thin gels prepared in the laboratory for the commercially available PhastSystem (Pharmacia). From preparation of the gels to their staining, the procedure took less than 3 h. The pH gradient was found reproducible and the apparent average pI of individual low density lipoproteins could be measured with a coefficient of variation of less than 5% between and less than 2% within the same run. The method appears especially suitable for the exploration of charge properties of multiple lipoprotein samples, or other large macromolecules as low density lipoproteins and very low density lipoproteins, with considerable economy of time and reagents.  相似文献   

16.
17.
18.
The order of phosphatidylcholine (PC) acyl chains in the surface monolayer of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) has been determined from 2H nuclear magnetic resonance order parameters, SCD, using selectively deuterated PC or palmitic acids. From the computer simulated line shapes, we find two distinct phospholipid domains within the amphiphilic monolayer of both VLDL and LDL. In the more ordered domain of LDL, SCD was approximately 0.3 for the "plateau" chain region. The SCD values of VLDL particles are similar to those of LDL for the 5,6- and 11,12-positions, hence we suggest the organization of the more ordered region of VLDL and LDL are similar. The domain of low order in LDL comprises less than 10% of the phospholipid molecules (we do not distinguish between PC and sphingomyelin), having approximately the same order (SCD less than 0.1) as egg PC - sphingomyelin unilamellar vesicles. In VLDL, the domain of low order comprises between approximately 10 and approximately 20% of the phospholipid molecules and the entire acyl chain is in an essentially isotropic environment (SCD less than 0.02). We prepared VLDL-sized microemulsions composed of egg PC, deuterated PC, and triolein to test whether the apoproteins were responsible for creating the two differently organized domains in VLDL and LDL. Surprisingly, these protein-free particles also showed two domains of different order at two temperatures. The high order region, however, is less ordered than in VLDL and LDL. We explain two surface domains of PC in terms of lipid organization and the unique interactions of lipids in the various lipoprotein particles.  相似文献   

19.
The purpose of this study was to determine the effects of a fish oil concentrate (FOC) on the in vitro conversion of very low density lipoproteins (VLDL) to intermediate (IDL) and low density lipoproteins (LDL). Six hypertriglyceridemic patients were randomly allocated to receive either placebo (olive oil) or FOC (1 g/14 kg body weight/day) for 4 weeks in a crossover study with a 4-week washout period. The FOC provided 3 g of eicosapentaenoic + docosahexaenoic acid per 70 kg of body weight, and it lowered plasma triglyceride and VLDL cholesterol levels by 35% and 42%, respectively. Decreases in the largest particles (VLDL(1)) were primarily responsible, with no effect noted in smaller VLDL particles (VLDL(2) and VLDL(3)). The FOC increased LDL cholesterol levels by 25% (P < 0.06) but did not affect LDL particle size. VLDL(1) and VLDL(3) were incubated in vitro with human postheparin lipases. Although triglycerides from both types of VLDL were hydrolyzed to the same extent with both treatments, particles isolated during the FOC phase were more readily converted into IDL and LDL than were control particles. These data suggest that the marine omega3 fatty acids may enhance the propensity of VLDL to be converted to LDL, partly explaining the decreased VLDL and increased LDL levels in FOC-treated patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号