首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The incorporation of radioactive uridine into RNA by micromeres, mesomeres and macromeres of sea urchin embryos was studied, employing methods for separating the cell types in pure suspension. At the 16-cell stage, the 3-cell types, on a per genome basis, synthesized RNA at approximately the same rate although on a per mg protein basis the micromere-RNA synthetic rate was considerably higher than either mesomeres or macromeres. At the 32-cell stage, incorporation of radioactive uridine by micromeres decreased relative to mesomeres and macromeres. It was demonstrated that radioactive uridine could not be effectively washed or diluted out of the cells of 16-cell stage embryos. Experiments on reaggregating cells did not detect any transfer or transport of radioactivity from micromeres to the other cells. Possible explanations for these findings versus the disparate results of previous investigators were presented.  相似文献   

2.
At the 16-cell stage, the sea urchin embryo is partitioned along the animal-vegetal axis into eight mesomeres, four macromeres, and four micromeres. The micromeres, unlike the other blastomeres, are autonomously specified to produce skeletogenic mesenchymal cells and are also required to induce the vegetal-plate territory. A long-held belief is that micromeres inherit localized maternal determinants that endow them with their cell autonomous behavior and inducing capabilities. Here, we present evidence that an orthodenticle-related protein, SpOtx appears transiently in nuclei of micromeres but not in nuclei of mesomeres and macromeres. At later stages of development, SpOtx was translocated into nuclei of all cells. To address the possibility that SpOtx was retained In the cytoplasm at early developmental stages we searched for cytoplasmic proteins that interact with SpOtx. A proline-rich region of SpOtx resembling an SH3-binding domain was used to screen an embryo cDNA expression library, and a cDNA clone was isolated and shown to be α-actinin. A yeast two-hybrid analysis showed a specific interaction between the proline-rich region of SpOtx and a putative SH3 domain of the sea urchin α-actinin. Because micromeres lack an actin-based cytoskeleton, the results suggested that, at the vegetal pole of the 16-cell stage embryo, SpOtx was translocated into micromere nuclei, whereas in other blastomeres SpOtx was actively retained in the cytoplasm by binding to α-actinin. The transient appearance of SpOtx in micromere nuclei may be associated with the specification of micromere cell fate. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Fourth cleavage of the sea urchin embryo produces 16 blastomeres that are the starting point for analyses of cell lineages and bilateral symmetry. We used optical sectioning, scanning electron microscopy and analytical 3-D reconstructions to obtain stereo images of patterns of karyokinesis and cell arrangements between 4th and 6th cleavage. At 4th cleavage, 8 mesomeres result from a variant, oblique cleavage of the animal quartet with the mesomeres arranged in a staggered, offset pattern and not a planar ring. This oblique, non-radial cleavage pattern and polygonal packing of cells persists in the animal hemisphere throughout the cleavage period. Contrarily, at 4th cleavage, the 4 vegetal quartet nuclei migrate toward the vegetal pole during interphase; mitosis and cytokinesis are latitudinal and subequatorial. The 4 macromeres and 4 micromeres form before the animal quartet divides to produce a 12-cell stage. Subsequently, macromeres and their derivatives divide synchronously and radially through 8th cleavage according to the Sachs-Hertwig rule. At 5th cleavage, mesomeres and macromeres divide first; then the micromeres divide latitudinally and unequally to form the small and large micromeres. This temporal sequence produces 28-and 32-cell stages. At 6th cleavage, macromere and mesomere descendants divide synchronously before the 4 large micromeres divide parasynchronously to produce 56- and 60-cell stages.  相似文献   

4.
A protocol was developed to fractionate micromeres, mesomeres and macromeres of 16-cell stage sea urchin embryos by elutriation. The purities of these fractions were 99%, 93%, and 90%, and their recoveries were 75%, 31%, and 42%, respectively. Using this method, several hundred milligrams of each blastomere type were obtainable from a single-pair mating. On culture, micromeres formed spicules in the presence of horse serum, mesomeres developed into ciliated ectodermal vesicles and macromeres formed gastrula-like or exogastrula-like embryoids with spicules. To analyze the different structures characteristic of the blastomere lineage, we examined the expressions of marker genes. Cells of the micromere lineage expressed the primary mesenchyme-specific SM50 gene exclusively, those of the mesomere lineage expressed the ectoderm-specific arylsulfatase gene strongly, and SM50 and the endoderm-specific Endo 16 genes weakly, whereas those of the macromere lineage expressed all three marker genes. These results indicate that blastomeres fractionated by elutriation were equivalent to those isolated by hand under a microscope with respect to development and gene expression.  相似文献   

5.
The 16-cell sea urchin embryo has blastomeres of three distinct size classes: micromeres, mesomeres, and macromeres. Each class is already restricted in its developmental fate, micromeres being committed to formation of primary mesenchyme cells. The three classes of blastomeres were isolated in high purity and incubated in [35S]methionine until the next cleavage. Nearly all the radioactive protein was solubilized and subjected to two-dimensional electrophoresis according to O'Farrell. Of approximately 1000 spots resolved, there are no qualitative differences among the three blastomeres. When embryos were labeled between the first and fourth cleavages and blastomeres then isolated, no qualitative differences in protein synthesis were observed. Moreover, there are very few changes when unfertilized eggs are compared to 16-cell embryos. Thus cellular determination during embryonic development is not accompanied by qualitative changes in the distribution within the embryo of abundantly synthesized proteins, virtually all of which are coded for by sequences present in the egg.  相似文献   

6.
Blastomeres of sea urchin embryo change their shape from spherical to columnar during the early cleavage stage. It is suspected that this cell shape change might be caused by the increase in the adhesiveness between blastomeres. By cell electrophoresis, it was found that the amount of negative cell surface charges decreased during the early cleavage stages, especially from the 32-cell stage. It was also found that blastomeres formed lobopodium-like protrusions if the embryos were dissociated in the presence of Ca2+. Interestingly, a decrease in negative cell surface charges and pseudopodia formation first occurred in the descendants of micromeres and then in mesomeres, and last in macromeres. By examining the morphology of cell aggregates derived from the isolated blastomeres of the 8-cell stage embryo, it was found that blastomeres derived from the animal hemisphere (mesomere lineage) increased their adhesiveness one cell cycle earlier than those of the vegetal hemisphere (macromere lineage). The timing of the initiation of close cell contact in the descendants of micro-, meso- and macromeres was estimated to be 16-, 32- and 60-cell stage, respectively. Conversely, the nucleus-to-cell-volume ratios, which are calculated from the diameters of the nucleus and cell, were about 0.1 when blastomeres became adhesive, irrespective of the lineage.  相似文献   

7.
SPECIES SPECIFIC PATTERN OF CILIOGENESIS IN DEVELOPING SEA URCHIN EMBRYOS   总被引:4,自引:3,他引:1  
The events of cell division and ciliogenesis in individual blastomeres of developing embryos of the sea urchins Temnopleurus toreumaticus and Hemicentrotus pulcherrimus were followed with a Nomarski differential interference microscope. The number of cell divisions before initiation of ciliogenesis was determined with respect to species. In T. toreumaticus , ciliogenesis began about 4 hr after fertilization at 25°C. The sequence of ciliogenesis was as follows: cilia appeared first on smaller micromeres, followed in order by blastomeres derived from larger micromeres, those from mesomeres and finally those derived from macromeres. Blastomeres originating from mesomeres, macromeres, larger micromeres and smaller micromeres had completed the 8th, 9th, 7th and 5th divisions respectively, before they generated cilia.
In H. pulcherrimus , embryos started to form cilia about 9 hr after fertilization at 18°C. Cilia appeared first on blastomeres of mesomere origin and, then on those of macromere origin. Before initiation of ciliogenesis, descendants of mesomeres and macromeres completed 9 and 10 rounds of cell division. Descendants of larger micromeres and the majority of cells derived from smaller micromeres did not acquired cilia even when the embryo began to rotate within the fertilization membrane. At this stage, the former had completed the 6th division and the latter the 8th division. Cell counts of blastomeres per embryo at the blastula stage also supported this observation.  相似文献   

8.
Cortical features of the meso- and macromeres differ from those of the micromeres in sea urchins. At the end of the 8-cell stage, the four animal cells have a continuous row of vesicles lining the free surface of the cell by transmission electron microscopy (TEM) and the nuclei and the resulting mitotic apparatuses (MA) remain at the cell centers and eventually divide equally into eight mesomeres. In the four vegetal cells, narrow gaps can be seen in the vesicular rows near the vegetal pole. The resting nuclei migrate to these gaps and on forming the spindles, they point directly to the gaps. The result is formation of vesicle-free micromeres and vesicle-covered macromeres by unequal divisions.  相似文献   

9.
A method for large-scale culture of isolated blastomeres of sea urchin embryos in spinner flasks was developed. Micromeres and meso-, macromeres isolated from sea urchin embryos at the 16-cell stage were cultured by this method and the patterns of protein synthesis by their descendants were examined by two-dimensional gel electrophoresis of [35S] methionine-labeled proteins. Six distinct proteins with molecular weights of 140–kDa, 105–kDa, 43–kDa, 32–kDa, and 28–kDa (two components) were specifically synthesized by differentiating micromeres. Quantitative analysis of the two-dimensional gel patterns demonstrated that all these proteins, except the 32–kDa protein, appeared at the time of ingression of primary mesenchyme cells (PMC's) in vivo , several hours earlier than the onset of spicule formation. The synthesis of 32–kDa protein was paralleled to active spicule formation and the uptake of Ca2+. Cell-free translation products directed by poly (A)+ RNAs isolated from descendant cells of micromeres and meso-, macromeres were compared by two-dimensional gel electrophoresis. Several spots specific to the micromere lineage were detected. However, none of them comigrated with the proteins synthesized specifically by the cultured micromeres. The results suggest that the expression of these proteins specific to differentiating micromeres may involve post-translational modification.  相似文献   

10.
The chromatin structure of three cell types isolated from the 16-cell stage sea urchin embryo has been probed with micrococcal nuclease. In micromeres, the four small cells at the vegetal pole, the chromatin is found to be considerably more resistant to degradation by micrococcal nuclease than chromatin in the larger mesomere and macromere cells which undergo more cellular divisions and are committed to different developmental fates. The micromeres show an order of magnitude decrease in the initial digestion rate and a limit digest value which is one third that of the larger blastomeres; both observations are suggestive of the formation of a more condensed chromatin structure during the process of commitment, or as the rate of cell division decreases. The decreased sensitivity to nuclease for micromeres is similar to results reported for sperm and larval stages of development.  相似文献   

11.
Summary Micromeres isolated from the 16-cell stage were implanted on mesomeres or macromeres from the same larva. The process of coalescence and the cleavage pattern of the transplanted micromeres were studied by means of light and electron microscopy.The transplanted micromere shows the same cleavage pattern as the micromerein situ. A close contact is established between the micromere and the host cell and cytoplasmic bridges are found between the cells.The micromere is dependent on its adjoining blastomere(s) and the rate of cleavage is slowed down when the micromere is isolated. Macromeres and mesomeres are not subjected to a similar change in rate of cleavage when isolated from the rest of the embryo.The ratio mitochondria/yolk in micromeres is different from that observed in macro- or mesomeres and the possible consequences of this fact are discussed.  相似文献   

12.
Using the whole-cell voltage-clamp technique we have studied electrical coupling and dye coupling between pairs of blastomeres in 16- to 128-cell-stage sea urchin embryos. Electrical coupling was established between macromeres and micromeres at the 16-cell stage with a junctional conductance (G(j)) of 26 nS that decreased to 12 nS before the next cleavage division. G(j) between descendants of macromeres and micromeres was 12 nS falling to 8 nS in the latter half of the cell cycle. Intercellular current intensity was independent of transjunctional voltage, nondirectional, and sensitive to 1-octanol and therefore appears to be gated through gap junction channels. There was no significant coupling between other pairs of blastomeres. Lucifer yellow did not spread between these electrically coupled cell pairs and in fact significant dye coupling between nonsister cells was observed only at the 128-cell stage. Since 1-octanol inhibited electrical communication between blastomeres at the 16- to 64-cell stage and also induced defects in formation of the archenteron, it is possible that gap junctions play a role in embryonic induction.  相似文献   

13.
Inhomogeneous distribution of egg RNA sequences in the early embryo   总被引:6,自引:0,他引:6  
W H Rodgers  P R Gross 《Cell》1978,14(2):279-288
  相似文献   

14.
In order to analyze the RNA populations present in different cells of very early embryos, we have developed a protocol to purify these large blastomeres using counterflow centrifugal elutriation (CCE). This procedure employs ethanol fixation to stabilize the cells against shear forces encountered during CCE. Using this method, we fractionated the three different blastomere types of the 16-cell sea urchin embryo, the micromeres, mesomeres, and macromeres, achieving 96, 94, and 96% mean purities, respectively. We show here that intact RNA is recovered with equal efficiency from each blastomere preparation. Using this method, we have identified several RNAs that are distributed non-uniformly among these cells.  相似文献   

15.
It has been known from results obtained in the classical experiments on sea urchin embryos that cell isolation and transplantation showed extensive interactions between the early blastomeres and/or their descendants. In the experiments reported here a systematic reexamination of recombination of mesomeres and their progeny (which come from the animal hemisphere) with various vegetal cells derived from blastomeres of the 32- and 64-cell stage was carried out. Cells were marked with lineage tracers to follow which cell gave rise to what structures, and newly available molecular markers have been used to analyze different structures characteristic of regional differentiation. Large micromeres form spicules and induce gut and pigment cells in mesomeres, conforming to previous results. Small micromeres, a cell type not heretofore examined, gave rise to no recognizable structure and had very limited ability to evoke poorly differentiated gut tissue in mesomeres. Macromeres and their descendants, Veg 1 and Veg 2, form primarily what their normal fate dictated, though both did have some capacity to form spicules, presumably by formation from secondary mesenchyme. Macromeres and their descendants were not potent inducers of vegetal structures in animal cells, but they suppress the latent ability of mesomeres to form vegetal structures. The results lead us to propose that the significant interactions during normal development may be principally suppressive effects of mesomeres on one another and of adjacent vegetal cells on mesomeres.  相似文献   

16.
17.
Summary The cleavage pattern of the young sea urchin embryo was studied by means of light and electron microscopy.The micromeres, which are known to have a strong organizing effect on the embryo, were found to form a syncytium with their neighbouring micromeres and with the macromeres. The cell walls between these cells were observed to be incomplete while there were interphase nuclei with intact nuclear membranes in the micro- and the macromeres. Similar phenomena with a break down of the cell membranes were not observed between macro- and mesomeres while there were intact interphase nuclei in these cells. Micromeres implanted on macromeres or mesomeres were found to coalesce with these latter cells in the course of a few minutes. During interphase, when the nuclei of both micro- and mesomere (macromere) had intact nuclear membranes, there also was a break down of the cell walls and a syncytium was formed by the host cell and the implanted micromere (see Fig. 6).The primary mesenchyme cells, which are regarded as the descendants of the micromeres, were also studied and were likewise found to form true syncytia.The importance to embryogenesis of this unique formation of syncytia is discussed.  相似文献   

18.
Sea urchin micromeres were isolated from the 16-cell stage embryos and cultured until they differentiated into spicule-forming cells. Electrophoretic analysis of proteins labeled with [35S]-methionine showed that the differentiation accompanied the synthesis of five cell-specific proteins. These proteins appeared prior to spicule formation and were synthesized continuously or maintained stably while the cultured micromeres formed spicules. In contrast, these proteins were hardly detectable during development of the meso- and macromeres. Correlation between synthesis of the specific proteins and spicule formation was further examined in culture conditions which inhibit spicule formation. In Zn2+ -containing or serum-free medium, the micromere descendants failed to form spicules and exhibited markedly reduced synthesis of one of the specific proteins (32 K daltons). After removal of Zn2+, or addition of serum, however, spicules were formed with delay but concomitantly with an increase in the synthesis of this protein. This clear correlation suggests the participation of the 32 K protein in the process of spicule formation.  相似文献   

19.
20.
In Patella vulgata the 32-cell stage represents a pause in the mitotic activity prior to the differentiation of the mesentoblast mother cell 3D. At the onset of this stage, the embryo is radially symmetrical. Nevertheless, the plane of bilateral symmetry is indicated as it passes through the macromeres forming the vegetal cross-furrow. From the early beginning of the 32-cell stage, all four macromeres intrude far into the interior and touch the centrally radiating cells of the first quartet of micromeres. The two cross-furrow forming macromeres (3B and 3D) intrude the farthest and come into contact with the greatest number of micromeres. Finally, the contacts are extended significantly and maintained with only one of these macromeres. From that moment, this cell can be called the macromere 3D and the dorsoventral axis is determined. The evolution of the internal cell contacts between the micromeres of the first quartet and the macromeres indicates an essential role of the former in the determination of one of the latter as the mesentoblast mother cell, and thus in the determination of dorsoventral polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号