首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A detailed procedure is described for a rapid detection of phosphoglucomutase-2 (=phosphopentomutase; PGM-2) on Cellogel following electrophoresis of extracts of human red blood cells and other tissues, including cultured fibroblasts and various types of primate-rodent somatic hybrid cells.The present study indicated that there is only one locus for phosphopentomutase in man. The data from a selected panel of 20 independent clones of man-mouse somatic cell hybrids, investigated for the presence of human chromosomes and for the presence or absence of human PGM-2 favored the assignment of the human PGM-2 locus to chromosome 4.  相似文献   

2.
Following protoplast fusion between Nicotiana tabacum (dhfr) and N. megalosiphon (nptII) somatic hybrids were selected on the basis of dual resistance to kanamycin and methotrexate. Despite strong selection for parental nuclear-encoded resistances, only nine N. tabacum (+) N. megalosiphon somatic hybrids were obtained. A preferential loss of the parental N. tabacum nuclear and organelle genome was apparent in some plants in spite of the lack of genomic inactivation by the irradiation or chemical treatment of the parental protoplasts. Only six of the nine hybrids recovered possessed both parental profiles of nuclear RFLPs and isoenzymes. The remaining three hybrids were highly asymmetric with two being identical to N. megalosiphon except for minor morphological differences and rearranged or recombined mitochondrial DNAs (mtDNA), while the other one was distinguishable only by the presence of a rearranged or recombined mtDNA, and was therefore possibly a cybrid. Overall, eight somatic hybrids possessed rearranged or recombined mtDNAs and chloroplast inheritance was non-random since eight possessed N. megalosiphon-type chloroplasts and only one had N. tabacum chloroplasts. In contrast, using the same selection approach, numerous morphologically similar symmetric somatic hybrids with nuclear RFLPs and isozymes of both the parental species were recovered from control fusions between N. tabacum and the more closely related N. sylvestris. In spite of the low frequency of recovery of symmetric N. tabacum (+) N. megalosiphon hybrids in this study, one of these hybrids displayed a significant degree of self-fertility allowing for back-crosses to transfer N. megalosiphon disease-resistance traits to N. tabacum. Plant Research Centre Contribution No. 1579  相似文献   

3.
Summary The segregation of human glutathione peroxidase-1 (GPX1, EC 1.11.1.9) was followed in a series of human-mouse somatic cell hybrids carrying various fragments of human chromosome 3. These fragments originated from translocations in the parental human fibroblasts or from spontaneous deletions which occurred during the cultivation of hybrid clones. The smallest region of overlap found for the position of GPX 1 was 3p133q12.  相似文献   

4.
Somatic hybrid plants were produced by fusion of protoplasts from cell cultures of the Nicotiana tabacum L. sulfur mutant Su/Su and from leaf mesophyll of Nicotiana glauca Graham. After fusion the N. glauca protoplasts failed to survive under the selected culture condition. From the hybrid cells light green shoots were produced. The hybrid plants exhibited intermediate characters between parental species with respect to leaf morphology, trichome density, floral structure and flower color. The chromosome number of 25 hybrid plants was 2n = 72 and both N. glauca and N. tabacum chromosomes were identified in the hybrids. Results of isoenzyme analysis showed bands of both parents and a specific (hybrid) band for aspartate amino-transferase. Small subunit fraction-1-protein of somatic hybrids also consisted of the sum of N. glauca and N. tabacum bands. Leaf spot formation associated with the Su locus of N. tabacum was observed in somatic hybrids.  相似文献   

5.
Summary A 0.9 kb cDNA fragment, corresponding to a large part of Rhesus monkey pepsinogen A mRNA, was used as probe for the chromosomal localization of the human pepsinogen A gene(s) using human-rodent somatic cell hybrids. Southern blot analysis of 14 human-Chinese hamster and three human-mouse cell hybrids, strongly indicates that the human PGA locus is on chromosome 11. The human-mouse hybrids, containing a translocation involving chromosome 11, allow sublocalization to the region q12-pter.  相似文献   

6.
Localization of the rat immunoglobulin heavy chain locus to chromosome 6   总被引:1,自引:0,他引:1  
We have previously used rat/mouse somatic cell hybrids to localize the rat c-myc gene to chromosome 7 (Sümegi et al. 1983) and the rat immunoglobulin kappa locus to chromosome 4 (Perlmann et al. 1985). We now report that by utilizing rat/mouse somatic cell hybrids, we have localized the rat immunoglobulin heavy chain locus to chromosome 6.  相似文献   

7.
Mouse (RAG) cells, (deficient in hypoxanthine-phosphoribosyl-transferase), and Ateles paniscus chamek primary fibroblasts were used in fusion experiments to generate somatic cell hybrids. Both parental cell lines were genetically characterized by karyological and biochemical analyses with 27 isozyme systems. These procedures were useful for monitoring primate chromosome segregation in somatic cell hybrids, for detecting chromosome rearrangements of primate chromosomes, and for identifying individual primate chromosomes. These characterizations are necessary to distinguish between different hybrid cell lines and to generate a panel for gene mapping studies. This is achieved by selecting cell lines that segregate different sets of relatively few primate isozymes and chromosomes. Conversely, we eliminated hybrid cell lines either showing: (1) rearrangements between primate and mouse chromosomes, (2) extensive rearrangements of primate chromosomes, or (3) a large number of primate biochemical markers. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Summary Behavior of ribosomal RNA genes in the process of somatic hybridization was analyzed using hybrids Nicotiana tabacum + Atropa belladonna. Blothybridization of parental species DNAs to 32P-rDNA specific probes revealed two classes of ribosomal repeats in both tobacco and nightshade; their length was 11.2 kb, 10.4 kb (tobacco) and 9.4 kb, 10.2 kb (night-shade). For analysis of hybrids, labelled 32P rDNA specific probes were hybridized to DNA of parental species and somatic hybrids digested with restriction endonucleases EcoR1, EcoRV and BamH1. A new class of ribosomal DNA repeat, absent in parental species, was found in hybrid line NtAb-1. Possible mechanisms of appearence of a new rDNA class in the process of somatic cell fusion are discussed.  相似文献   

9.
Interspecies somatic cell hybrids were generated by fusing the mouse T-lymphoma cell line, BW5147, with normal human T lymphocytes at different stages of differentiation. Thymocytes, activated peripheral T lymphocytes, or an activated T-cell clone were used as human partners, respectively, in three independent fusions. Irrespective of the human cell partner used for fusion, a certain number of hybrids lost CD5 surface expression over a period of time in culture. Analysis at the phenotype and genetic level showed that lack of CD5 expression was due neither to segregation of human autosome 11, on which the CD5 gene has been mapped, nor to deletion of the CD5 structural gene. Furthermore, loss of CD5 surface expression correlated with the absence of specific mRNA. Since these hybrids preferentially segregate human chromosomes, these results indicate the existence of a non-syntenic trans-active locus, or loci, positively controlling the expression of the human CD5 gene.  相似文献   

10.
11.
Summary The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts.An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.A part of the results was presented at the Fifth International Conference on Human Gene Mapping, Edinburgh, July 1979 and reported as an abstract in the proceedings of this conference [Cytogenet Cell Genet 25:164 (1979)]  相似文献   

12.
Summary Fibroblasts from a beige mouse (C57BL/6J;bg J bgJ) have been established and maintained in culture for more than 3 yr. At early passages, the mutant cells were distinguishable from C57BL/6J control mouse fibroblasts at the ultrastructural level by the presence of enlarged cytoplasmic granules. After continuous passaging, this distinguishing feature was lost from the mutant cells, correlated with their increased growth rate. Clustered, perinuclear distribution of lysosomes was retained, however, and was quantitatively different at any passage number of the beige cell line from the dispersed distribution of these organelles in control mouse fibroblasts, as analyzed by computer-aided, video-enhanced light microscopy. In somatic cell hybrids between the established beige cell line and a control human diploid fibroblast cell strain, seven uncorrected hybrid lines retained a lysosomal dispersion pattern statistically indistinguishable from that of the beige mouse cell lines. Three corrected hybrid lines had lysosomal dispersion patterns that were significantly different from the beige parent line and indistinguishable from that of the control mouse fibroblast line. Thus, lysosomal dispersion can be used objectively and quantitatively to distinguish mutant beige and control mouse fibroblasts and corrected vs. uncorrected cell hybrids made from the beige/control human somatic cell crosses.  相似文献   

13.
Non-embryogenic protoplasts of Medicago rugosa and M. scutellata were electro-fused with iodoacetic acid-treated protoplasts of M. sativa (alfalfa). Putative somatic hybrid callus were obtained and some plants regenerated from both combinations. Hybridity of regenerants was confirmed by morphology, molecular means and cytological observations. Parental specific bands were recognized in somatic hybrids by Southern analysis. The somatic hybrids were perennial and their morphology was similar to M. sativa. Cytological observations were carried out on the somatic hybrids, their vegetative clones and self-pollinated offspring. Original somatic hybrids were aneuploids (2n=31–59), but during vegetative proliferation, their chromosome numbers reduced to 32. Those clones of hybrids formed seeds from M. sativa (+) M. rugosa by self-crossing. Chromosomal rearrangements within the parental genomes were observed in vegetative clones of hybrids and their S1 offspring by Genomic in situ Hybridization (GISH). Some of S1 offspring from M. sativa (+) M. rugosa showed better spring growth than parental M. sativa and tend to be tolerant to Alfalfa weevil. It was considered that these traits were introduced from the genome transferring M.␣rugosa chromosome to M. sativa. The cell fusion may still have a potential in transferring alien chromosomes in order to increase the genetic variation for crop breeding.  相似文献   

14.
Using a human αB-crystallin genomic probe and human-mouse somatic cell hybrids, the human αB-gene was assigned to chromosome 11 and further corroborated by in situ hybridization to normal metaphase chromosomes. This assignment confirmed and regionally mapped the locus to q22.3–23.1.  相似文献   

15.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

16.
Human phosphofructokinase (PFK; EC 2.7.1.11) is under the control of three structural loci which encode muscle-type (M), live-type (L), and platelet-type (P) subunits; human diploid fibroblasts and leukocytes express all three loci. In order to assign human PFKM locus to a specific chromosome we have analyzed human x Chinese hamster somatic cell hybrids for the expression of human M subunits, using an anti-human M subunit-specific mouse monoclonal antibody. In 18 of 19 hybrids studied, the expression of the PFKM locus segregated concordantly with the presence of chromosome 1 (discordance rate 0.05) as indicated by chromosome and isozyme marker analysis. The discordance rates for all the other chromosomes were 0.32 or greater, indicating that the PFKM locus is on chromosome 1. For the regional mapping of PFKM, eight hybrids were studied that contained one of five distinct regions of chromosome 1. These results further localize the human PFKM locus to region cen leads to q32 chromosome 1.  相似文献   

17.
Four lines of Ephestia kühniella each homozygous for one of three different allozyme alleles at the Est-2 locus and two alleles at the Adh locus were crossed in order to study the extent of somatic, reproductive and adaptive heterosis in F1 hybrids in comparison with the mean performance of the simultaneously reared inbred parent lines. With regard to adult weight and wing length (somatic heterosis) hybrids exhibit maximally 20% (males 10%) and 9% heterosis, respectively. As concerns the production of eggs and hatched larvae (reproductive heterosis) hybrids exceed the parental mean by 90% and 200%. Adaptive heterosis is realized by a shorter development period of the hybrids (maximally by 30%) as well as by significant lower variance of all metrical characters studied. In the F2 the degree of heterosis diminishes. There is neither an excess of heterozygotes among the segregating allozyme genotypes nor superior performance of the heterozygotes concerning any one of the traits studied. Therefore, it is concluded that the pronounced heterosis in F1 is not a single-gene-heterosis operating at the Est-2 and the Adh-locus.  相似文献   

18.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

19.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, γ-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

20.
We have characterized the genetic consequences of somatic hybridization within the ribosomal DNA (rDNA) of three interspecific hybrids, each involving M. sativa as one of the parents. Restriction-fragment-length-polymorphisms (RFLPs) of rDNA spacers and fluorescent-in-situ-hybridization (FISH) of an 18S-gene probe to mitotic chromosomes were used to compare parental and hybrid species. The M. sativa-coerulea hybrid retained all six parental nucleolar-organizing regions (NORs) and all parental RFLPs representing a complete integration of rDNA. The M. sativa-arborea hybrid retained five of six parental NORs while losing half of the arborea-specific RFLPs, indicating that simple chromosome loss of one arborea NOR accounted for the RFLP losses. Dramatic alterations occurred within the M. sativa-falcata hybrid where five of six parental NORs were retained and new rDNA RFLPs were created and amplified differentially among somaclonal-variant plants. The molecular basis of the new RFLPs involved increased numbers of a 340-bp subrepeating element within the rDNA intergenic spacer (IGS), suggesting that recurrent cycles of unequal recombination occurred at high frequency within the rDNA in somatic lineages.This paper was supported by the National Research Council of Italy, Special Project RAISA, Sub-project No. 2, Paper No. 1077  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号