首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Böddi  Katalin Kovács  F. Láng 《BBA》1983,722(2):320-326
Protochlorophyll (PChl) forms were performed in Triton X-100 detergent micelles. The concentration of Triton X-100 was 7·10?4 M (above the critical micellar concentration); the concentration of PChl varied between 1.6·10?5 and 1.8·10?4 M. Absorption, fluorescence and circular dichroism (CD) spectra were registered. The absorption spectra were resolved into Gaussian components by computer analysis. PChl forms with absorption bands at 632–634, 638, 652–654, 663–664, 668 and 676 nm and with fluorescence emission bands at 634–636, 640–644, 652–655, 677–678, 686 and 694–696 nm were observed in micellar solutions of different PChl concentrations. The CD spectra showed a strong dependence on the concentration of PChl: positive CD signals or positive Cotton effects were observed in the vicinity of 650 nm. The intensity of these signals increased in parallel with increasing concentration of PChl. No CD signals were found in the region of the longer wavelength absorption bands. These data show that the PChl exists in many different forms in this system, and the spectroscopic properties of these forms are determined by different molecular interactions viz., interactions of PChl with Triton X-100 or water molecules and/or by the aggregation of PChl.  相似文献   

2.
Characterization of the solubilization of lipid bilayers by surfactants   总被引:11,自引:0,他引:11  
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the 'equilibrium partition model', the dependence of the 'solubilizing detergent concentration' on the lipid concentration intersects with the lipid axis at -1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical ('solubilizing') effective ratio depends upon the nature of detergent less than any of these two factors.  相似文献   

3.
The disruption of a kidney cortex microsomal membrane preparation by a binary, nonionic detergent, was followed by using as markers, the changes in total protein content, and (Na+, K+)-ATPase in a supernatant fraction. Both markers responded similarly to changes in pH, microsome concentration and detergent concentration, but responded differently for time-dependent studies. The (Na+, K+)-ATPase activity was increased 2.2-fold (76.1 mumoles Pi/mg protein/h, 95% ouabain-sensitive) by a single detergent treatment and 3.5-fold (92% ouabain-sensitive) by a sequential detergent treatment. Changes in the critical micelle concentration (cmc) were observed for varying detergent and protein concentrations, which suggest interactions of monomeric detergent with the membrane. The peak of (Na+, K+)-ATPase activity occurred above the cmc which suggests the participation of micelles in releasing the enzyme from the membranes. Hill plots of the protein released as the detergent concentration was varied showed a change in the slope near the cmc indicating a four-fold increase in the binding of detergent to membranes as the detergent concentration is increased above the cmc. These results suggest that the disruption of membranes by detergent involves the binding of detergent monomers to the membrane followed by the formation of co-micelles of the detergent with segments of the membrane to complete the separation process.  相似文献   

4.
Equilibrium measurements of the binding of central nervous system myelin basic protein to sodium dodecyl sulphate, sodium deoxycholate and lysophosphatidylcholine have been obtained by gel permeation chromatography and dialysis. This protein associates with large amounts of each of these surfactants: the apparent saturation weight ratios (surfactant/protein) being 3.58 +/- 0.12 and 2.30 +/- 0.15 for dodecyl sulphate at ionic strengths 0.30 and 0.10, respectively 1.34 +/- 0.10 for deoxycholate (at 0.12 ionic strength) and 4.0 +/- 0.5 for lysophosphatidylcholine. Binding to the ionic surfactants increases markedly close to their critical micelle concentrations. Sedimentation analysis shows that at 0.30 ionic strenght in excess dodecyl sulphate the protein is monomeric. It becomes dimeric when the binding ratio falls below 1 at a free detergent concentration of approximately 0.25 mM: below this concentration much of the protein and deterent forms an insoluble complex. The amount of dodecyl sulphate bound at high concentrations and at both above-mentioned ionic strengths corresponds closely to that expected for interaction of a single poly-peptide with two micelles. Variability of deoxycholate micelle size on interaction with other molecules precludes a similar analysis for this surfactant. Association was observed only with single micelles of lysophosphatidylcholine. The results provide strong evidence for dual lipid-binding sites on basic protein and indicate that lipid bilayer cross-linking by this protein may be effected by single molecules.  相似文献   

5.
Upon mixing detergent solutions with the neutral fluorescent molecule 1,6-diphenyl-1,3,5-hexatriene a large increase in fluorescence is observed if detergent exceeds the critical micelle concentration. This property has been used to determine the critical micelle concentration of anionic, uncharged, zwitterionic, and cationic detergents. Regardless of detergent charge, the critical micelle concentrations obtained agree with the values obtained by other methods. This fluorescence assay is both sensitive and rapid, and should provide a simple and general method for determination of critical micelle concentration of any detergent.  相似文献   

6.
The kinetics of palmitoyl-CoA hydrolase were influenced by both the availability of the substrate and formation of micelles. At palmitoyl-CoA concentrations below the critical micelle concentration, addition of non-ionic detergent increased the activity until the critical micelle concentration of the mixed micelles was reached. At palmitoyl-CoA concentrations above the critical micelle concentration, inhibitor of the activity was observed, but addition of detergents of the Triton X series reversed the inhibition. Maximum palmitoyl-CoA hydrolase activity was found when the ratios (w/v) of palmitoyl-CoA: Triton X-100 and palmitoyl-CoA: Triton X-405 were approximately 0.35 and 0.05, respectively. At these above the mixed critical micelle concentration. The results indicate that monomer palmitoyl-CoA is the substrate and that monomer forms of the non-ionic detergents of the Triton X series activate the enzyme. Isolated microsomal lipids activated the microsomal palmitoyl-CoA hydrolase, suggesting that a hydrophobic environment is advantageous for interaction between enzyme and substrate in vivo. The maximum activity in the presence of mixed micelles is discussed in relation to a model where mixed micelles are regarded as artificial membranes to which the enzyme may adhere in an equilibrium with the monomer substrate and detergent in the monomer form. It is suggested that intracellular membranes may resemble mixed micelles in equilibrium with detergent-active substrates such as palmitoyl-CoA.  相似文献   

7.
This communication addresses the state of aggregation of lipid-detergent mixed dispersions. Analysis of recently published data suggest that for any given detergent-lipid mixture the most important factor in determining the type of aggregates (mixed vesicles or mixed micelles) and the size of the aggregate is the detergent to lipid molar ratio in these aggregates, herein denoted the effective ratio, Re. For mixed bilayers this effective ratio has been previously shown to be a function of the lipid and detergent concentrations and of an equilibrium partition coefficient, K, which describes the distribution of the detergent between the bilayers and the aqueous phase. We show that, similar to mixed bilayers, the size of mixed micelles is also a function of the effective ratio, but for these dispersions the distribution of detergent between the mixed micelles and the aqueous medium obeys a much higher partition coefficient. In practical terms, the detergent concentration in the mixed micelles is equal to the difference between the total detergent concentration and the critical micelle concentration (cmc). Thus, the effective ratio is equal to this difference divided by the lipid concentration. Transformation of mixed bilayers to mixed micelles, commonly denoted solubilization, occurs when the surfactant to lipid effective ratio reaches a critical value. Experimental evaluation of this critical ratio can be based on the linear dependence of detergent concentration, required for solubilization, on the lipid concentration. According to the ‘equilibrium partition model’, the dependence of the ‘solubilizing detergent concentration’ on the lipid concentration intersects with the lipid axis at −1/K, while the slope of this dependence is the critical effective ratio. On the other hand, assuming that when solubilization occurs the detergent concentration in the aqueous phase is approximately equal to the critical micelle concentration, implies that the above dependence intersects with the detergent axis at the critical micelle concentration, while its slope, again, is equal to the critical effective ratio. Analysis of existing data suggests that within experimental error both these distinctively different approaches are valid, indicating that the critical effective ratio at which solubilization occurs is approximately equal to the product of the critical micelle concentration and the distribution coefficient K. Since the nature of detergent affects K and the critical micelle concentration in opposite directions, the critical (‘solubilizing’) effective ratio depends upon the nature of detergent less than any of these two factors.  相似文献   

8.
Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni–NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.  相似文献   

9.
Otzen DE 《Biophysical journal》2002,83(4):2219-2230
The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents.  相似文献   

10.
Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3?4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.  相似文献   

11.
M.D. Il&#x;ina  A.Yu. Borisov 《BBA》1981,637(3):540-545
The fluorescence of chlorophyll (Chl) a in 0.007–0.1% Triton X-100 was investigated by a phase-shift technique. The Chl a concentrations varied from 0.7 to 25 μM. Parallel measurements of fluorescence lifetime (τ) and quantum yield (ψ) were made. It was concluded that homogeneous energy transfer takes place at detergent concentrations above 0.025%: (i) the transfer between uniform molecules of the pigment solubilized in Triton X-100 micelles, when τ and ψ are constant; (ii) the transfer towards the quenching centers, resulting in a proportional decrease in τ and ψ. At a Triton X-100 concentration of about 0.025% the Chl a emission becomes heterogeneous. It is evident from the disproportional decrease in τ and ψ (greater in ψ than in τ) and also from the rise of the fluorescence at 730–750 nm. As the Triton X-100 concentration becomes lower than the critical one (0.021%), the number of micelles drops abruptly and Chl a forms colloid particles in the aqueous medium. This manifests itself as a decrease in τ and as a certain stabilization of ψ. Having analyzed the complex pattern of the τ/ψ ratio, we concluded that under these conditions more than 90% of Chl a is in a weakly fluorescent form (τ < 30 ps) and about 1% is in an aggregated state fluorescing at 732 nm with τ about 0.7 ns.  相似文献   

12.
The fluorescence-based long-chain fatty acid probe BSA-HCA (bovine serum albumin labeled with 7-hydroxycoumarin-4-acetic acid) is shown to respond to binding of long-chain acyl-CoA thioesters by quenching of the 450 nm fluorescence emission. As determined by spectrofluorometric titration, binding affinities for palmitoyl-, stearoyl-, and oleoyl-CoA (Kd = 0.2-0.4 microM) are 5-10 times lower than those for the corresponding nonesterified fatty acids. In the presence of detergent (Chaps, Triton X-100, n-octylglucoside) above the critical micelle concentration, acyl-CoA partitions from BSA-HCA and into the detergent micelles. This allows BSA-HCA to be used as a fluorescent probe for continuous recording of fatty acid concentrations in detergent solution with little interference from acyl-CoA. Using a calibration of the fluorescence signal with fatty acids in the C14 to C20 chain-length range, fatty acid consumption by Pseudomonas fragi and rat liver microsomal acyl-CoA synthetase activities are measured down to 0.05 microM/min with a data sampling rate of 10 points per second. This new method provides a very promising spectrofluorometric approach to the study of acyl-CoA synthetase reaction kinetics at physiologically relevant (nM) aqueous phase concentrations of fatty acid substrates and at a time resolution that cannot be obtained in isotopic sampling or enzyme-coupled assays.  相似文献   

13.
Studies were done on the effect of bile salts on the rates of hydrolysis of the N-acetylneuraminyl linkages of several sialic acid-containing compounds by the neuraminidase of Clostridium perfringens. When GM3-ganglioside, two glycolipids (glycophorin and orosomucoid) and neuraminyl-lactose were used as substrates, hydrolysis was obtained even in the absence of bile salts, but addition of this detergent, below its critical micellar concentration, increased the reaction rates; above the critical micellar concentration of the detergent rates decreased again. When a second ganglioside, GM1, was used as substrate, the requirement for bile salts was absolute; hydrolysis was not observed at all without this detergent. With increasing concentrations of bile salt and in the presence of high concentrations of enzyme, rates of hydrolysis increased, reaching maximal values at fixed ratios of bile salt to GM1-ganglioside. Physical measurements showed that mixtures of bile salt and GM1-ganglioside form mixed micelles that have a higher critical micellar concentration, a lower molecular weight and greater axial ratio than the corresponding micelles of pure GM1-ganglioside.  相似文献   

14.
Musatov A  Robinson NC 《Biochemistry》2002,41(13):4371-4376
Bovine heart cytochrome c oxidase (CcO), solubilized by either nonionic detergents or phospholipids, completely dimerizes upon the addition of bile salts, e.g., sodium cholate, sodium deoxycholate, or CHAPS. Bile salt induced dimerization occurs whether dodecyl maltoside, decyl maltoside, or Triton X-100 is the primary solubilizing detergent or the enzyme is dispersed in phosphatidylcholine, phosphatidylethanolamine, or mixtures thereof. In each case, complete CcO dimerization can be verified by sedimentation velocity and sedimentation equilibrium after correction for bound detergent and/or phospholipid. The relative concentration of the bile salt is critical for production of homogeneous, dimeric CcO. For example, enzyme solubilized by 2 mM detergent requires an equal molar concentration of sodium cholate. Similarly, enzyme dispersed in 20 mM phospholipid requires 50 mM sodium cholate, concentrations that are commonly used to reconstitute CcO into small unilamellar vesicles. Bile salts do more than just stabilize dimeric CcO and prevent detergent-induced dissociation into monomers. They are able to completely reverse detergent-induced monomerization and cause completely monomeric CcO to reassociate. Dimeric CcO so generated is no more stable than the original complex and easily dissociates into monomers if the bile salt is removed. The dimerization process is dependent upon a full complement of subunits; e.g., if subunits VIa and VIb are removed, the resulting monomeric CcO will not reassociate upon the addition of sodium cholate. These results support four important consequences: (1) dissociation of dimeric CcO into monomers is reversible; (2) stable dimers can be produced under solution conditions; (3) dimers can be stabilized even at relatively high pH and low enzyme concentration; and (4) subunits VIa and VIb are required for dimerization.  相似文献   

15.
The amyloid beta peptide (Abeta) with 39-42 residues is the major component of amyloid plaques found in brains of Alzheimer's disease patients, and soluble oligomeric peptide aggregates mediate toxic effects on neurons. The Abeta aggregation involves a conformational change of the peptide structure to beta-sheet. In the present study, we report on the effect of detergents on the structure transitions of Abeta, to mimic the effects that biomembranes may have. In vitro, monomeric Abeta(1-40) in a dilute aqueous solution is weakly structured. By gradually adding small amounts of sodium dodecyl sulfate (SDS) or lithium dodecyl sulfate to a dilute aqueous solution, Abeta(1-40) is converted to beta-sheet, as observed by CD at 3 degrees C and 20 degrees C. The transition is mainly a two-state process, as revealed by approximately isodichroic points in the titrations. Abeta(1-40) loses almost all NMR signals at dodecyl sulfate concentrations giving rise to the optimal beta-sheet content (approximate detergent/peptide ratio = 20). Under these conditions, thioflavin T fluorescence measurements indicate a maximum of aggregated amyloid-like structures. The loss of NMR signals suggests that these are also involved in intermediate chemical exchange. Transverse relaxation optimized spectroscopy NMR spectra indicate that the C-terminal residues are more dynamic than the others. By further addition of SDS or lithium dodecyl sulfate reaching concentrations close to the critical micellar concentration, CD, NMR and FTIR spectra show that the peptide rearranges to form a micelle-bound structure with alpha-helical segments, similar to the secondary structures formed when a high concentration of detergent is added directly to the peptide solution.  相似文献   

16.
Equilibrium measurements of the binding of central nervous system myelin basic protein to sodium dodecyl sulphate, sodium deoxycholate and lysophosphatidylcholine have been obtained by gel permeation chromatography and dialysis. This protein associates with large amounts of each of these surfactants: the apparent saturation weight ratios (surfactant/protein) being 3.58 ± 0.12 and 2.30 ± 0.15 for dodecyl sulphate at ionic strengths 0.30 and 0.10, respectively, 1.34 ± 0.10 for deoxycholate (at 0.12 ionic strength) and 4.0 ± 0.5 for lysophosphatidylcholine. Binding to the ionic surfactants increases markedly close to their critical micelle concentrations. Sedimentation analysis shows that at 0.30 ionic strength in excess dodecyl sulphate the protein is monomeric. It becomes dimeric when the binding ratio falls below 1 at a free detergent concentration of approximately 0.25 mM: below this concentration much of the protein and detergent forms an insoluble complex. The amount of dodecyl sulphate bound at high concentrations and at both above-mentioned ionic strengths corresponds closely to that expected for interaction of a single polypeptide with two micelles. Variability of deoxycholate micelle size on interaction with other molecules precludes a similar analysis for this surfactant. Association was observed only with single micelles of lysophosphatidylcholine. The results provide strong evidence for dual lipid-binding sites on basic protein and indicate that lipid bilayer cross-linking by this protein may be effected by single molecules.  相似文献   

17.
The effect of low concentrations of nonionic detergents with different critical micelle concentrations such as Triton X-100, Brij 35 and octylglucoside on rabbit liver microsomes is studied by means of 31P-NMR, 1H-NMR, dynamic light scattering and functional investigations. Hexane phosphonic acid diethyl ester was used as a phosphorus membrane probe molecule to monitor the interaction of detergent molecules with microsomal phospholipids by 31P-NMR. This method is more sensitive than 31P-NMR of phospholipids alone and permitted the estimation of the maximum number of detergent molecules which can be incorporated in microsomes without the formation of mixed micelles outside the membrane. These membrane saturation concentrations were determined to be 0.07 (Brij 35), 0.1 (Triton X-100) and 0.4 (octylglucoside) (molar ratio of detergent/total phospholipids). Above these detergent concentrations, mixed micelles consisting of detergent and membrane constituents are formed, coexisting with the microsomes up to the membrane solubilization concentration. The results indicate a dependence of the membrane saturation concentration on the critical micelle concentration of the detergent and a preferential removal of phosphatidylcholine over phosphatidylethanolamine from the microsomes by all detergents studied.  相似文献   

18.
Thioflavin T is a benzothiazole dye that exhibits enhanced fluorescence upon binding to amyloid fibrils and is commonly used to diagnose amyloid fibrils, both ex vivo and in vitro. In aqueous solutions, thioflavin T was found to exist as micelles at concentrations commonly used to monitor fibrils by fluorescence assay ( approximately 10-20 microM). Specific conductivity changes were measured at varying concentration of thioflavin T and the critical micellar concentration was calculated to be 4.0+/-0.5 microM. Interestingly, changes in the fluorescence excitation and emission of thioflavin T were also dependent on the micelle formation. The thioflavin T micelles of 3 nm diameter were directly visualized using atomic force microscopy, and bound thioflavin T micelles were observed along the fibril length for representative fibrils. Increasing concentration of thioflavin T above the critical micellar concentration shows increased numbers of micelles bound along the length of the amyloid fibrils. Thioflavin T micelles were disrupted at low pH as observed by atomic force microscopy and fluorescence enhancement upon binding of thioflavin T to amyloid fibrils also reduced by several-fold upon decreasing the pH to below 3. This suggests that positive charge on the thioflavin T molecule has a role in its micelle formation that then bind the amyloid fibrils. Our data suggests that the micelles of thioflavin T bind amyloid fibrils leading to enhancement of fluorescence emission.  相似文献   

19.
E Kn?ppel  D Eisenberg  W Wickner 《Biochemistry》1979,18(19):4177-4181
Bee venom melittin is a water-soluble tetramer of identical polypeptide chains. Each chain has 26 residues. The 20 N-terminal residues are hydrophobic and the 6 C-terminal residues are basic. Melittin has been shown to integrate into natural and synthetic membranes and to lyse a wide variety of cells. To understand how a water-soluble protein can spontaneously partition into a membrane, we have studied the interaction of melittin with micelles of deoxycholate (DOC), Brij 58, and sodium dodecyl sulfate (NaDodSO4). Circular dichroism spectra showed that NaDodSO4, an ionic detergent, and Brij 58, a nonionic detergent, caused similar major changes in the protein's conformation. Gel filtration studies revealed that melittin forms mixed micelles with either Brij or DOC. The melittin-DOC mixed micelles have 2 mol of DOC per mol of melittin. Cross-linking studies with dimethyl suberimidate confirmed that the protein is a tetramer and showed that it becomes monomeric either in mixed micelles with Brij or DOC or in butanol. Despite this major structural change of melittin in the presence of an amphiphile, the covalently cross-linked form is as active in human erythrocyte lysis as the native protein.  相似文献   

20.
研究了阳离子去污剂-溴化+烷基三甲基铵变性时氨基酰酶的失活与构象变化.当用溴化+烷基三甲基铵滴定氨基酰化酶时,随着去污剂浓度增大,酶的活力逐渐丧失,至50mmolL时酶完全失活.用荧光发射光谱(295nm激发)的方法监测了氨基酰化酶的构象变化.发现氨基酰化酶失活先于构象变化.从这一结果看来.金属酶的活性部位构象可能也是比整个分子的构象具有较大的柔性或运动性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号