首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The investigation of Neoseiulus cucumeris in the context of the ecological risk assessment of insect resistant transgenic plants is of particular interest as this omnivorous predatory mite species is commercially available and considered important for biological control. In a multitrophic feeding experiment we assessed the impact of Bt maize on the performance of N. cucumeris when offered spider mites (Tetranychus urticae) reared on Bt (Bt11, Syngenta) or non-Bt maize (near isogenic line) and Bt or non-Bt maize pollen as a food source. Various parameters including mortality, development time, oviposition rate were measured. Spider mites were used as a prey for N. cucumeris, since these herbivores are known to contain similar levels of Cry1Ab toxin, when reared on Bt maize, as those found in the transgenic leaf material. In contrast, toxin levels in pollen of this transgenic cultivar are very low. No differences in any of the parameters were found when N. cucumeris was fed with spider mites reared on Bt and non-Bt maize. Pollen was shown to be a less suitable food source for this predator as compared to spider mites. Moreover, subtle effects on female N. cucumeris (9% longer development time and 17% reduced fecundity) were measured when fed with pollen originating from Bt maize as compared to non-Bt maize pollen. Our findings indicate that the predatory mite N. cucumeris is not sensitive to the Cry1Ab toxin as no effects could be detected when offered Bt-containing spider mites, and that the effects found when fed with Bt maize pollen can be assigned to differences in nutritional quality of Bt and non-Bt maize pollen. The significance of these findings is discussed with regard to the ecological relevance for risk assessment of transgenic plants.  相似文献   

2.
The predatory mite Neoseiulus cucumeris (Oudemans) (Acarina: Phytoseiidae) successfully controlled the broad mite Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) on two varieties of greenhouse-grown sweet peppers (Capsicum annuum L.). A survey of pre-plant seedlings showed that nurseries were a source of infestation for the broad mite. The predatory mites were released twice (on day 1 and 5, or 15 days later) on each plant, every second plant or every fourth plant. Broad mite populations were evaluated by sampling young leaves from the top of the plant. The effect of the broad mite on plant height, dry mass and yield was evaluated. Additionally, since N. cucumeris is known to control thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), blue sticky traps and flower sampling were used to evaluate changes in thrips populations. All three release rates of N. cucumeris significantly (P<0.05) controlled broad mite populations, but when the predatory mites were released only on every fourth plant, the overall height and yield of the plants were adversely affected by broad mites. Releasing N. cucumeris on each or every second plant was as efficacious in controlling broad mites as sulfur treatments in terms of plant height, dry mass and yield. Plants treated with sulfur, however, had significantly higher thrips populations and fruit damage.  相似文献   

3.
In Europe and North America the western flower thrips,Frankliniella occidentalis, is an important pest in various greenhouse crops, such as sweet pepper and cucumber. Two species of predatory mite are commercially applied for biological control of this pest:Amblyseius cucumeris andA. barkeri. Thrips control is generally successful from March onwards. During winter, however, thrips control by these predatory mites is less effective. An important reason for this is that the commercially applied strains of both mite species enter reproductive diapause under short-day photoperiods, whereas the western flower thrips does not enter diapause. In this paper we report on selection experiments for non-diapause in strains of both mite species, aimed at obtaining predators that do not enter diapause under light- and temperature conditions prevailing in winter. Additional experiments were done to estimate the potential of the selected lines as control agents ofF. occidentalis. Selection for non-diapause proved highly successful in both predatory mite species. In a New Zealand strain ofA. cucumeris diapause incidence decreased from 41% to 0% in about ten generations; in a Dutch strain ofA. barkeri diapause incidence decreased from 67% to 0% in about six generations. Furthermore, selection for non-diapause had no influence on predator performance, measured as predation rate and oviposition rate on a diet of first instar thirps larvae. Rates of predation and oviposition were the same for selected and unselected lines in both species; rates of predation and oviposition were higher forA. cucumeris than forA. barkeri. After 18 months under non-diapause conditions, no less than 92% of a sample of the selected non-diapause line ofA. cucumeris did not enter diapause when tested under diapause-inducing conditions. This indicates that ‘non-diapause’ is a stable trait in these predatory mites. Finally, a small-scale greenhouse experiment in a sweet pepper crop showed that the selected non-diapause line ofA. cucumeris established successfully under diapause-inducing short-day conditions.  相似文献   

4.
Biological control of different species of pest with various species of generalist predators can potentially disrupt the control of pests through predator-predator interactions. We evaluate the impact of three species of generalist predatory mites on the biological control of green peach aphids, Myzus persicae (Sulzer) with the aphidophagous gall midge Aphidoletes aphidimyza (Rondani). The predatory mites tested were Neoseiulus cucumeris (Oudemans), Iphiseius degenerans (Berlese) and Amblyseius swirskii Athias–Henriot, which are all commonly used for pest control in greenhouse sweet pepper. All three species of predatory mites were found to feed on eggs of A. aphidimyza, even in the presence of abundant sweet pepper pollen, an alternative food source for the predatory mites. In a greenhouse experiment on sweet pepper, all three predators significantly reduced population densities of A. aphidimyza, but aphid densities only increased significantly in the presence of A. swirskii when compared to the treatment with A. aphidimyza only. This stronger effect of A. swirskii can be explained by the higher population densities that this predator reached on sweet pepper plants compared to the other two predator species. An additional experiment showed that female predatory midges do not avoid oviposition sites with the predator A. swirskii. On the contrary, they even deposited more eggs on plants with predatory mites than on plants without. Hence, this study shows that disruption of aphid control by predatory mites is a realistic scenario in sweet pepper, and needs to be considered when optimizing biological control strategies.  相似文献   

5.
李玉闯  郭倩倩  刘怀  李广云 《生态学报》2024,44(12):5219-5229
胡瓜新小绥螨(Neoseiulus cucumeris)是一种商业化的广食性生防天敌,可以防治多种农业害螨和害虫,具有重要的经济和生态价值。但是作为一种外来引种的捕食螨,它在我国的适生区域分布以及气候变化对其分布的影响尚不明确。根据胡瓜新小绥螨的现有分布点和19个生物气候因子,利用刀切法评估关键气候因素的重要性,并采用Maxent生态位模型分别预测了目前和未来气候条件下它在中国分布情况,分析了其在中国的潜在适生区域的变化。结果表明模型预测得到的受试者工作特征曲线ROC曲线下的面积AUC(Area under curve)值为0.87,表明模型的准确度好。最冷季节的降水量(Bio_19)、等温性(Bio_3)和气温季节性(Bio_4)是影响胡瓜新小绥螨适生性的最重要的环境因子, 对模型的贡献率分别为36.2%、25% 和18.1%。目前胡瓜新小绥螨的适生区面积约占我国陆地面积的60%,在未来气候条件下,其适生区域有进一步扩大的趋势,在2050年其中高度适生区域扩张至63%。不同时期胡瓜新小绥螨的分布中心比较稳定,均分布于四川省内,但有向东北迁移的趋势。本研究明确了胡瓜新小绥螨在中国适宜的释放区域及可能定殖的区域,为该引种天敌的合理利用提供了理论依据。  相似文献   

6.
Generalist phytoseiids are often observed for long periods on plants in the absence of prey, feeding on alternative foods and reaching high population levels. The persistence of generalist predatory mites on plants with a scarcity or absence of prey is a requirement for successful biocontrol strategies of herbivore mites. The importance of pollen as an alternative food for the support of generalist predatory mite populations is widely recognized. However, on grape the presence of pollen is often limited and thus other food sources should contribute towards generalist predatory mite persistence on perennial plants. Previous field observations reported the relationships between the population increases of generalist phytoseiids with late-season spread of grape downy mildew (GDM) Plasmopara viticola. In this study, we test the hypothesis that GDM could be a suitable food source for the predatory mites Amblyseius andersoni and Typhlodromus pyri. In the laboratory we compared the development times, oviposition rates and life-table parameters of predatory mites feeding on pollen or GDM mycelium and spores. Grape downy mildew supported the survival, development and oviposition of T. pyri and A. andersoni. Life-table parameters showed that GDM was a less suitable food source than pollen for both phytoseiid species and that it was more favorable for A. andersoni than for T. pyri. Implications for predator–prey interactions and conservation biological control in vineyards are discussed.  相似文献   

7.
Based on the hypothesis that matching diets of intraguild (IG) predator and prey indicate strong food competition and thus intensify intraguild predation (IGP) as compared to non‐matching diets, we scrutinized diet‐dependent mutual IGP between the predatory mites Neoseiulus cucumeris and N. californicus. Both are natural enemies of herbivorous mites and insects and used in biological control of spider mites and thrips in various agricultural crops. Both are generalist predators that may also feed on plant‐derived substances such as pollen. Irrespective of diet (pollen or spider mites), N. cucumeris females had higher predation and oviposition rates and shorter attack latencies on IG prey than N. californicus. Predation rates on larvae were unaffected by diet but larvae from pollen‐fed mothers were a more profitable prey than those from spider‐mite fed mothers resulting in higher oviposition rates of IG predator females. Pollen‐fed protonymphs were earlier attacked by IG predator females than spider‐mite fed protonymphs. Spider mite‐fed N. californicus females attacked protonymphs earlier than did pollen‐fed N. californicus females. Overall, our study suggests that predator and prey diet may exert subtle influences on mutual IGP between bio‐control agents. Matching diets did not intensify IGP between N. californicus and N. cucumeris but predator and prey diets proximately influenced IGP through changes in behaviour and/or stoichiometry.  相似文献   

8.
Arthropods often engage in complex trophic interactions such as intraguild predation (IGP), true omnivory (i.e., feeding on plants and prey), and apparent competition. Theoretical treatments of the effects of such interactions on herbivore populations have been concerned almost entirely with equilibrium conditions. Yet these interactions are common in non-equilibrium settings such as agroecosystems, where they are likely to have a strong influence on pest populations. We therefore tested short-term effects of IGP and food supplementation on interactions between two predators (the phytoseiid mite Neoseiulus cucumeris and the anthocorid bug Orius laevigatus) and their shared prey, Frankliniella occidentalis, on strawberry plants. All three consumers feed on strawberry pollen, both mites and bugs prey on thrips, and the bug also feeds on the mites (IGP). Strong IGP on mites (IG prey) by the bugs (IG predator) was recorded in structurally-simple arenas. In a more complex setting (whole-plants), however, the intensity of IGP differed among plant structures. Likewise, pollen supplementation reduced both IGP and predation on thrips in a structurally simple setting. In the whole-plant experiment, IGP was more intense on pollen-bearing than pollen-free flowers. The study illustrated how spatial dynamics, generated when consumers track food sources differently in the habitat and possibly when herbivorous and IG prey alter their distribution to escape predation, led to site-specific configuration of interacting populations. The intensity of resulting trophic interactions was weakened by food supplementation and by increased complexity of the habitat.  相似文献   

9.
Ideal free distribution (IFD) models predict that animals distribute themselves such that no individual can increase its fitness by moving to another patch. Many empirical tests assume that the interference among animals is independent of density and do not quantify the effects of density on fitness traits. Using two species of predatory mites, we measured oviposition as a function of conspecific density. Subsequently, we used these functions to calculate expected distributions on two connected patches. We performed an experimental test of the distributions of mites on two such connected patches, among which one had a food accessibility rate that was twice as high as on the other. For one of the two species, Iphiseius degenerans, the distribution matched the expected distribution. The distribution also coincided with the ratio of food accessibility. The other species, Neoseiulus cucumeris, distributed itself differently than expected. However, the oviposition rates of both species did not differ significantly from the expected oviposition rates based on experiments on single patches. This suggests that the oviposition rate of N. cucumeris was not negatively affected by the observed distribution, despite the fact that N. cucumeris did not match the predicted distributions. Thus, the distribution of one mite species, I. degenerans, was in agreement with IFD theory, whereas for the other mite species, N. cucumeris, unknown factors may have influenced the distribution of the mites. We conclude that density-dependent fitness traits provide essential information for explaining animal distributions.  相似文献   

10.
Yan  Jingyi  Zhang  Bo  Li  Guiting  Xu  Xuenong 《BioControl》2021,66(6):803-811

The symbiotic bacterial communities of phytophagous arthropods are affected by host species and feeding habits, but such effects have been poorly studied in natural enemies. Here, we investigated the entire bacterial microbiome of two species of predatory mites, Neoseiulus californicus and Neoseiulus barkeri, feeding on three types of diets (artificial diet, pollen and their natural prey, the spider mite Tetranychus urticae) by high-throughput sequencing of the 16S rRNA gene. We found that the bacterial diversity of predatory mites feeding on artificial diet was significantly different from pollen and spider mite feeding groups in both N. californicus and N. barkeri, while bacterial diversity also differed strikingly between the two species even when feeding on the same artificial diet. This finding suggests that the bacterial community of predatory mites is determined by both species and diet. Alphaproteobacteria and Gammaproteobacteria were the two dominant bacterial classes in both predatory mite species, except for N. californicus feeding on artificial diet. The bacterium Bosea sp. was detected in all samples as the core microbial species in predatory mites. Additionally, we discuss whether Bradyrhizobiaceae and Rhodobacteraceae bacteria could be used as probiotics in the artificial diet of N. californicus for better mass rearing.

  相似文献   

11.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

12.
Extensive sampling of strawberry plants in everbearing and June-bearing strawberry plantations and on potted plants showed that different species of mites were spatially separated. Of the two phytophagous species recorded, Tetranychus urticae was most abundant on old leaves and Phytonemus pallidus on folded leaves and flower/fruit clusters. Predatory phytoseiid mites were found on all plant parts but different species were spatially separated; Neoseiulus cucumeris and N. aurescens were found mostly on folded leaves and clusters, and N. californicus and Phytoseiulus persimilis on old and medium aged leaves. No Typhlodromus pyri were found in the field plantations. These patterns of distribution did not change over sampling dates in summer and early autumn. An understanding of this within-plant zonation of mite species is important when studying predator–prey interactions and when designing sampling strategies for strawberry. A programme to sample the entire mite system on strawberry should be stratified to include all the above mentioned parts of the plant. Different sampling protocols, as appropriate, are required for sampling different pest species and their associated predators.  相似文献   

13.
Ten predatory mite species, all phytoseiids, were evaluated for control of western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on greenhouse cucumber. This study was done to further improve biological control of thrips on this crop. Neoseiulus cucumeris (Oudemans) is at present used for biological control of thrips in greenhouses. Compared to this species, Typhlodromalus limonicus (Garman & McGregor), Typhlodromips swirskii (Athias-Henriot) and Euseius ovalis (Evans) reached much higher population levels resulting in a significantly better control of thrips. T. limonicus was clearly the best predator of WFT. Also Euseius scutalis (Athias-Henriot) increased to higher populations levels than N. cucumeris, but without controlling the thrips, probably because of an unequal distribution of this predator on the plant. Iphiseius degenerans (Berlese), Neoseiulus barkeri (Hughes), Euseius finlandicus (Oudemans) and Typhlodromus pyri (Scheuten) did not establish better than N. cucumeris. A non-diapausing exotic strain of N. cucumeris did not differ from the North European strain. The best performers in this study were all of sub-tropical origin. T. limonicus, T. swirskii and E. ovalis have good potentials for controlling not only thrips but also whiteflies. Factors affecting the efficacy of phytoseiids on greenhouse cucumbers are discussed.  相似文献   

14.
The predatory mite Iphiseius degenerans (Berlese) is commercially available as a biological control agent of thrips and spider mites in greenhouse crops. Developmental duration and immature survival of I. degeneransreared on nine types of food (almond pollen, apple pollen, castor bean pollen, plum pollen, sweet pepper pollen, Tetranychus urticaeKoch, Frankliniella occidentalis(Pergande), Ephestia kuehniella Zeller eggs and Artemia franciscana Kellogg cysts) and on three substrates (Multicel, sweet pepper leaf, and bean leaf) were determined in the laboratory. All experiments were carried out at 25 °C. On Multicel, mean developmental times on pollen ranged from 6.0 to 7.1 days, with the lowest value recorded on almond pollen and the highest on sweet pepper pollen. When reared on castor bean pollen significantly longer developmental times were obtained on a sweet pepper leaf compared to a bean leaf or Multicel. Developmental duration when offered T. urticaeon Multicel ranged between 6.1 and 6.9 days, on a bean leaf development was completed in 8.0 days. The longest developmental times on Multicel were recorded on Ephestia eggs (7.0 days) and on decapsulated Artemia cysts (7.5 days). No development beyond the protonymphal stage occurred in the absence of food or when encapsulated Artemia cysts or thrips larvae were offered on Multicel. On a sweet pepper leaf and a bean leaf, respectively 6.7 and 10.0% of the eggs reached adulthood when thrips larvae were provided as food; developmental times recorded here, were 9.0 and 8.3 days. Overall, immature mortality occurred mainly in the protonymphal stage and ranged from 0.0 to 36.7%. In conclusion, I. degenerans is able to feed on a variety of natural and unnatural foods, but thrips larvae and sweet pepper pollen are unfavourable food for immature development. This could compromise the establishment of this biological control agent when used against thrips in sweet pepper crops.  相似文献   

15.
A method was developed for the rearing of coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), and its predatory mite Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae) on embryo culture seedlings of coconut (Cocos nucifera) in the laboratory. Seedlings in the ages of <2, 2–4 and 4–6 months were infested with 75 field-collected coconut mites and the population growth was determined up to six weeks after introduction. The populations of coconut mites increased exponentially up to five weeks after introduction and declined thereafter on seedlings of all ages with significant differences among the three groups of seedlings occurring over time. At week 5, a significantly higher mean number (±SE) of coconut mites (20,098 ± 3,465) was bred on 4–6-month-old seedlings than on smaller seedlings, and on the largest seedlings the numbers were highest at all time intervals, except at week 2. Neoseiulus baraki was reared on embryo culture seedlings of the three age groups infested with coconut mites, by introduction of five female deutonymphs and one male, three weeks after introducing coconut mites. Predator numbers progressed significantly over time, but the size of seedlings did not significantly influence the numbers. On all groups of seedlings, the mean number of N. baraki increased up to two weeks after introduction on to seedlings and then declined. Many coconut mites were successfully reared in the laboratory for a longer period by this method and it could also be used as an alternative method to rear N. baraki. Development of this method may contribute to the progress of studies on the biology and ecology of coconut mite and its interactions with natural enemies.  相似文献   

16.
In spring and summer, two groups of natural enemies are successfully used for biological control of western flower thrips,Frankliniella occidentalis (Pergande) in greenhouses: phytoseiid mites (Amblyseius cucumeris (Oudemans) and, to a lesser extent,A. barkeri (Hughes)) and anthocorid bugs (Orius spp.). During winter, however, these predators often fail to control the pest. One likely cause for failure is the predators' tendency to enter diapause under short day conditions. In addition, eggs of predatory mites are generally susceptible to low humidity conditions, which often arise in greenhouses when outside temperatures drop below zero, or at bright, hot days in summer. In search for a thrips predator that is not hampered by these conditions, five subtropical phytoseiid species were selected which were known to feed on thrips:A. hibisci (Chant),A. degenerans Berlese,A. limonicus s.s. Garman and McGregor,A. scutalis (Athias-Henriot) andA. tularensis (Congdon). These species were compared toA. cucumeris andA. barkeri, with respect to the following features: (1) predation and oviposition rate with youngF. occidentalis larvae as prey, (2) oviposition rate on a diet of sweet pepper pollen, (3) drought tolerance spectrum of eggs, and (4) incidence of reproductive diapause under short day conditions. The results showed thatA. limonicus exhibited the highest predation and oviposition rates on a diet of thrips larvae. Moreover,A. limonicus females showed total absence of diapause under the conditions tested. A major disadvantage of this species was, however, that its eggs were most sensitive to low air humidity conditions. Least sensitive to low air humidity were eggs ofA. degenerans andA. hibisci. Females ofA. degenerans andA. hibisci also showed total absence of diapause, and intermediate rates of predation and oviposition, on both thrips larvae and pollen. In conclusion, we argue thatA. degenerans andA. hibisci are the most promising candidates for biological control ofF. occidentalis under conditions of low humidity and short day length. The success of these candidates remains to be shown in greenhouse experiments.  相似文献   

17.
The eriophyoid mite Aceria guerreronis Keifer (Eriophyidae), commonly called the coconut mite, is a key pest of coconut fruits. Surveys conducted on coconut palms in Brazil revealed the predatory mites Neoseiulus paspalivorus DeLeon (Phytoseiidae) and Proctolaelaps bickleyi Bram (Ascidae) as the most commonly associated natural enemies of A. guerreronis on coconut fruits. However, virtually nothing is known about the life history of these two predators. We conducted laboratory experiments at 25 ± 0.1°C, 70–90% RH and 12:12 h L:D photoperiod to determine the life history characteristics of the two predatory mites when feeding on A. guerreronis and other potential food sources present on coconut fruits such as Steneotarsonemus furcatus DeLeon (Tarsonemidae), coconut pollen and the fungus Rhizopus cf. stolonifer Lind (Mucoraceae). In addition, the two-spotted spider mite Tetranychus urticae Koch (Tetranychidae) was tested for its suitability as prey. Both predators, N. paspalivorus and P. bickleyi, thrived on A. guerreronis as primary food source resulting in shorter developmental time (5.6 and 4.4 days, respectively), higher oviposition rate (1.7 and 7.0 eggs/female/day, respectively) and higher intrinsic rate of increase (0.232 and 0.489 per female/day, respectively) than on any other diet but were unable to develop or lay eggs when fed T. urticae. Coconut pollen and S. furcatus were adequate alternative food sources for N. paspalivorus and Rhizopus for P. bickleyi. We discuss the relevance of our findings for natural and biological control of the coconut mite A. guerreronis.  相似文献   

18.
Generalist predatory mites are the common phytoseiid fauna in many agroecosystems, but little attention has been paid to their potential as biological control agents. In this study, we determined the functional responses of adult females of the generalist predator Neoseiulus barkeri Hughes on eggs, larvae, and adults of the two-spotted spider mite, Tetranychus urticae Koch, in the laboratory. Predation experiments were conducted on pepper leaf discs over a 24 h period at 25±1°C, 70–80% RH and 16L:8D photoperiod. Prey densities ranged 5 to 80 eggs, or 5 to 40 larvae, or 1 to 8 female adults of T. urticae per disc. The predation rate of N. barkeri adult females on T. urticae eggs was the same as on its larvae, but the predation rate on adult females was much lower. The role of generalist predatory mites in integrated and biological control of greenhouse pests was discussed.  相似文献   

19.
We recently reported evidence for increased diapause incidence in the spider mite Tetranychus urticae in presence of the predatory mite Typhlodromus pyri. This effect may arise from (1) selective predation on non-diapause spider mites, (2) predator-induced diapause in spider mites, or (3) both. Using a different strain of T. urticae, we first recovered increased diapause incidence in association with predators. Then, we tested for selective feeding in two-choice experiments with equal numbers of non-diapause and diapause spider mites. We found that the predatory mite had a significant preference for the latter. This indicates that increased diapause incidence in association with predatory mites is not due to selective predation. Therefore, predator-mediated physiological induction of diapause seems a more likely explanation. The cues leading to induction appear to relate to the predators, not their effects, since predation simulated by spider-mite removal or puncturing did not significantly affect diapause incidence. Why spider mites benefit from this response, remains an open question.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

20.
The behavioural response of the predatory mite Phytoseiulus persimilis to volatiles from several host plants of its prey, spider mites in the genus Tetranychus, was investigated in a Y-tube olfactometer. A positive response to volatiles from tomato leaves and Lima bean leaves was recorded, whereas no response was observed to volatiles from cucumber leaves, or leaves of Solanum luteum and Solanum dulcamara.Different results were obtained for predators that differed in rearing history. Predators that were reared on spider mites (Tetranychus urticae) on Lima bean leaves did respond to volatiles from Lima bean leaves, while predators that had been reared on the same spider mite species but with cucumber as host plant did not respond to Lima bean leaf volatiles. This effect is compared with the effect of rearing history on the response of P. persimilis to volatile allelochemicals of prey-infested plant leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号