首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Along with the development of nanotechnology, an increase in production and application of nanosized magnetite (Fe3O4) is expected. Though magnetite is considered relatively safe, information concerning potential hazards of synthetic magnetite nanoparticles with unique physico-chemical characteristics to aquatic organisms is still limited. In this study, we evaluated the toxicity of nanosized (27.2 ± 9.8 nm) and bulk (144.2 ± 67.7 nm) magnetite particles to different life stages of the aquatic crustacean Daphnia magna. In addition, phytotoxicity of the magnetite was evaluated using duckweed Lemna minor. The study did not reveal any statistically significant differences between the biological effects of nanosized and bulk magnetite particles. Both forms of magnetite induced very low toxicity (EC50 > 100 ppm) to D. magna and L. minor in the standard acute assays. However, it was demonstrated that at acutely subtoxic magnetite concentrations (10 and 100 ppm), the number of neonates hatched from D. magna ephippia was decreased. Moreover, short-term (48 h) exposure of neonate daphnids to these concentrations may significantly affect the long-term survival and reproductive potential of daphnids. These results indicate that substantial contamination of aquatic ecosystems by magnetite may disrupt the stability of cladoceran populations.  相似文献   

2.
Systemic insecticides such as neonicotinoids and fipronil are widely applied in rice production. These insecticides have been suspected of reducing biodiversity in paddy ecosystems and reducing wild dragonfly populations in Japan. Conventional ecotoxicological risk assessment could not confirm this, as it has not considered interspecific variation in sensitivity to insecticides. We estimated the median effect concentration (EC50) of 15 systemic insecticides to first instar nymphs of a Japanese damselfly, Ischnura senegalensis (Rambur) (Odonata: Coenagrionidae), commonly found in rice paddy fields. Damselflies were found to be highly sensitive to pyrethroid pesticides, less so to phenylpyrazole, organophosphates, and carbamates, and least sensitive to neonicotinoids, nereistoxin, and diamide. Given the acute toxicity data, the sensitivity of the damselfly to neonicotinoids was considered to be lower than that of other aquatic insects, whereas the EC50 values of the damselfly were 2–3 orders lower than that of Daphnia magna Straus (Diplostraca: Daphniidae), which is a standard test species. These results indicate that the conventional ecological risk assessment based on acute toxicity data of D. magna would underestimate the impact of neonicotinoids on Odonata diversity in paddy ecosystems. We therefore recommend using the paddy-dwelling damselfly as a new test species for insecticide bioassay.  相似文献   

3.
Alcoholic fermentation by an oenological strain of Torulaspora delbrueckii in association with an oenological strain of Saccharomyces cerevisiae was studied in mixed and sequential cultures. Experiments were performed in a synthetic grape must medium in a membrane bioreactor, a special tool designed to study indirect interactions between microorganisms. Results showed that the S. cerevisiae strain had a negative impact on the T. delbrueckii strain, leading to a viability decrease as soon as S. cerevisiae was inoculated. Even for high inoculation of T. delbrueckii (more than 20× S. cerevisiae) in mixed cultures, T. delbrueckii growth was inhibited. Substrate competition and cell-to-cell contact mechanism could be eliminated as explanations of the observed interaction, which was probably an inhibition by a metabolite produced by S. cerevisiae. S. cerevisiae should be inoculated 48 h after T. delbrueckii in order to ensure the growth of T. delbrueckii and consequently a decrease of volatile acidity and a higher isoamyl acetate production. In this case, in a medium with a high concentration of assimilable nitrogen (324 mg L?1), S. cerevisiae growth was not affected by T. delbrueckii. But in a sequential fermentation in a medium containing 176 mg L?1 initial assimilable nitrogen, S. cerevisiae was not able to develop because of nitrogen exhaustion by T. delbrueckii growth during the first 48 h, leading to sluggish fermentation.  相似文献   

4.
Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker’s yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80 % similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS–SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.  相似文献   

5.
Starter cultures of Candida tropicalis and Saccharomyces cerevisiae isolated from tchapalo were tested in pure culture and co-culture of four ratios [2:1, 25:4, 1:4, 2:3 (cells/cells)] for their ability to ferment sorghum wort to produce tchapalo. All the starters showed means growth rate between 0.043 and 0.101 h?1. Only C. tropicalis in pure culture showed growth rate lower than that of S. cerevisiae in single culture. During fermentation, according to total soluble solids depletion, yeast starters could be grouped in four different profiles. But in the beer produced, total soluble solids contents were statistically identical. The lowest values were obtained with co-culture C. tropicalis + S. cerevisiae in the ratios of 2:1 and 2:3. Starter cultures with large ratio of C. tropicalis produced a higher organic acids and 2-butanone than S. cerevisiae in pure culture. However, co-culture C. tropicalis + S. cerevisiae (2:1) was the alone starter which produced higher ethanol than S. cerevisiae in pure culture. The beers produced with C. tropicalis + S. cerevisiae (25:4), C. tropicalis + S. cerevisiae (1:4) and C. tropicalis were widely different from those produced with the others starter cultures.  相似文献   

6.
The objectives of this study were to evaluate the sensitivity of two bacterial tests commonly used in metal toxicity screening — the Vibrio fischeri bioluminescence inhibition test and the Pseudomonas putida growth inhibition test — in comparison to the standard acute Daphnia magna test, and to estimate applicability of the selected methods to the toxicity testing of environmental samples. The D. magna acute test proved to be more sensitive to cadmium (Cd), zinc (Zn) and manganese (Mn) than the two bacterial assays, whereas P. putida seems to be the most sensitive species to lead (Pb). Manganese appears to be slightly toxic to D. magna and non-toxic to the two selected bacteria. This leads to the conclusion that even in regions with high background concentrations, manganese would not act as a confounding factor. Low sensitivity of V. fischeri to heavy metals questions its applicability as the first screening method in assessing various environmental samples. Therefore, it is not advisable to replace D. magna with bacterial species for metal screening tests. P. putida, V. fischeri and/or other bacterial tests should rather be applied in a complex battery of ecotoxicological tests, as their tolerance to heavy metals can unravel other potentially present toxic substances and mixtures, undetectable by metal-sensitive species.  相似文献   

7.
A study was conducted to examine the effects of three probiotics, Lactobacillus sporogenes, Bacillus subtilis and Saccharomyces cerevisiae on the survival, growth and digestive enzymes activities of the freshwater prawn Macrobrachium rosenbergii post larvae (PL). The probiotics, L. sporogenes (4 %), B. subtilis (3 %) and S. cerevisiae (4 %) were taken and mixed with basal diet. Diet without probiotics served as control. These probiotics diets were fed to M. rosenbergii PL for a period of 60 days. After the feeding trail, the growth parameters such as survival, weight gain, specific growth rate and protein efficiency rate were found to be significantly (P < 0.05) higher in 4 % S. cerevisiae incorporated diet fed PL when compared with control. In the case of feed conversion rate just the reverse was seen (P < 0.05) at this concentration. This indicates its superior quality among different concentrations of probiotics tested. Activities of digestive enzymes, such as protease, amylase and lipase were significantly (P < 0.05) higher at this concentration (4 % S. cerevisiae). Some of essential and non-essential amino acids also significantly elevated in probiotics supplemented diet fed prawns. This study indicated that probiotics, S. cerevisiae incorporated diets were beneficial for M. rosenbergii in terms of increasing growth, enzyme and amino acid production.  相似文献   

8.
The alcoholic fermentation in Brazil displays some peculiarities because the yeast used is recycled in a non-aseptic process. After centrifugation, the cells are treated with acid to control the bacterial growth. However, it is difficult to manage the indigenous yeasts without affecting the main culture of Saccharomyces cerevisiae. This work evaluated how the cell treatment could be modified to combat contaminant yeasts based on the differential sensitivities to low pH and high concentrations of ethanol displayed by an industrial strain of S. cerevisiae and three strains of Dekkera bruxellensis, which are common contaminant yeasts in Brazilian fermentation processes. The tests were initially performed in rich medium with a low pH or a high concentration of ethanol to analyse the yeast growth profile. Then, the single and combined effects of low pH and ethanol concentration on the yeast cell viability were evaluated under non-proliferative conditions. The effects on the fermentation parameters were also verified. S. cerevisiae grew best when not subjected to the stresses, but this yeast and D. bruxellensis had similar growth kinetics when exposed to a low pH or increased ethanol concentrations. However, the combined treatments of low pH (2.0) and ethanol (11 or 13 %) resulted in a decrease of D. bruxellensis cell viability almost three times higher than of S. cerevisiae, which was only slightly affected by all cell treatments. The initial viability of the treated cells was restored within 8 h of growth in sugar cane juice, with the exception of the combined treatment for D. bruxellensis. The ethanol-based cell treatment, in despite of slowing the fermentation, could decrease and maintain D. bruxellensis population under control while S. cerevisiae was taking over the fermentation along six fermentative cycles. These results indicate that it may be possible to control the growth of D. bruxellensis without major effects on S. cerevisiae. The cells could be treated between the fermentation cycles by the parcelled addition of 13 % ethanol to the tanks in which the yeast cream is treated with sulphuric acid at pH 2.0.  相似文献   

9.
The aim of this study was to assess the efficiency of the new acute toxicity bioassay with the application of embryological criteria, using aquatic invertebrates such as Lymnaea stagnalis L. We were looking for optimal methods of water bio-monitoring, comparing the sensitivity of different biotests. Different forms of snails (embryonic and juvenile) were tested and the tests compared to each other and to the daphnia (EN ISO 6341) test as well. The tested substances were surfactants, which are now regarded global threat to surface waters. The main source of detergent pollution is municipal and industrial wastewater. The tested groups were exposed to various concentrations of diluted surfactant agents known as Brij 32, Brij 58, Bri 72, Brij 76, Brij 78 and the detergent known under the trade name of Ludwik. The results proved that juvenile forms showed higher sensitivity to the tested toxicants. Therefore, they could be used as a potential tool to monitor the acute toxicity of surfactants, which could be presence in aquatic ecosystems.  相似文献   

10.
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10–15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.  相似文献   

11.
The evolution of the yeast populations was investigated during controlled and spontaneous fermentations of Chardonnay must in two Franciacorta wineries (A and B) that used the same starter culture. Two hundred and three isolates were collected and identified as Saccharomyces cerevisiae (97.5 %), Pichia membranifaciens (2.0 %) and Hanseniaspora vinae (0.5 %) through the analyses of ITS rDNA region by RFLP, D1/D2 of 26S rDNA partial sequence and scHO gene. A high intraspecific diversity of S. cerevisiae isolates was detected by means of the inter-delta sequence PCR analysis: 117 profiles corresponding to different strains were distinguished (at level of similarity <90.5 %) and monitored to follow the dynamics of cell populations. In winery A, the commercial strain maintained the predominance since its δ-PCR profile constituted most of the colonies recovered at different times of sampling (from 44 to 100 % of plate counts), in this case only 18 different genotypes out of 74 isolates were recognized. In winery B, where spontaneous fermentations were performed in the same environment, the starter culture never took control and a succession of indigenous populations overcame without one prevailed on the others; actually, 40 genotypes out of 53 isolates can be identified. The highest level of biodiversity was observed in spontaneous fermentation (winery B) where 59 genotypes out of 71 S. cerevisiae isolates were discriminated; a continuous change in cell populations was noticed with the simultaneous presence from 6 to 10 different genotypes. The management of the starter culture and the environmental hygiene was shown to be fundamental to control the inoculated fermentations.  相似文献   

12.
Five yeast strains, Saccharomyces cerevisiae D8, M12, and S13; Hanseniaspora uvarum S6; and Issatchenkia orientalis KMBL5774, isolated from Korean grapes, were entrapped in Ca-alginate beads, which are non-toxic, simple to use, and economical. Ca-alginate beads containing yeast cells were soaked in protective solutions, such as skim milk, saccharides, polyols, and nitrogen compounds, before air-blast drying to improve the yeast survival rate and storage ability. The results showed that both entrapment in Ca-alginate beads and soaking in protective agents favorably affected the survival of all strains. The microenvironment formed by the beads and protective agents can protect the yeast cells from harsh environmental conditions, such as low water (below 10 %). All the yeast strains entrapped in Ca-alginate beads showed greater than 80 % survival and less than 11 % water content after air-blast drying at 37 °C for 5 h. In addition, air-blast dried cells of S. cerevisiae D8, M12, S13; H. uvarum S6; and I. orientalis KMBL5774 entrapped in 2 % Ca-alginate beads and soaked in protective agents (10 % skim milk containing 10 % sucrose, 10 % raffinose, 10 % trehalose, 10 % trehalose, and 10 % glucose, respectively) after air-blast drying at 37 °C for 5 h showed 90, 87, 92, 90, and 87 % viability, respectively. All dried entrapped yeast cells showed survival rates of at least 51 % after storage at 4 °C for 3 months.  相似文献   

13.
To improve inulin utilization and ethanol fermentation, exoinulinase genes from the yeast Kluyveromyces marxianus and the recently identified yeast, Candida kutaonensis, were expressed in Saccharomyces cerevisiae. S. cerevisiae harboring the exoinulinase gene from C. kutaonensis gave higher ethanol yield and productivity from both inulin (0.38 vs. 0.34 g/g and 1.35 vs. 1.22 g l?1 h?1) and Jerusalem artichoke tuber flour (0.47 vs. 0.46 g/g and 1.62 vs. 1.54 g l?1 h?1) compared with the strain expressing the exoinulinase gene from K. marxianus. Thus, the exoinulinase gene from C. kutaonensis is advantageous for engineering S. cerevisiae to improve ethanol fermentation from inulin sources.  相似文献   

14.
15.
This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.  相似文献   

16.
An improved instant and convenient biotin bioassay method using lyophilized cells of Lactobacillus plantarum and glycerol-suspended cells of Saccharomyces cerevisiae were established. In addition, a new biotin bioassay method with a bioB mutant strain (C 162) of Escherichia coli was established. Polyvinyl pyrrolidone solution was effective as the suspending medium for lyophilization or glycerol suspension of the cells. Satisfactory standard curves were obtained by the paper disk method and turbidimetric method with lyophilized cells of L. plantarum and E. coli C 162 and glycerol-suspended cells of S. cerevisiae. These lyophilized or glycerol-suspended cells, which were preserved at −20°C, could be used for the assay for more than one year.  相似文献   

17.
The use of surfactin and mycosubtilin as an eco-friendly alternative to control lettuce downy mildew caused by the obligate pathogen Bremia lactucae was investigated. Preliminary ecotoxicity evaluations obtained from three different tests revealed the rather low toxicity of these lipopeptides separately or in combination. The EC50 (concentration estimated to cause a 50 % response by the exposed test organisms) was about 100 mg L?1 in Microtox assays and 6 mg L?1 in Daphnia magna immobilization tests for mycosubtilin and 125 mg L?1 and 25 mg L?1 for surfactin, respectively. The toxicity of the mixture mycosubtilin/surfactin (1:1, w/w) was close to that obtained with mycosubtilin alone. In addition, the very low phytotoxic effect of these lipopeptides has been observed on germination and root growth of garden cress Lepidium sativum L. While a surfactin treatment did not influence the development of B. lactucae on lettuce plantlets, treatment with 100 mg L?1 of mycosubtilin produced about seven times more healthy plantlets than the control samples, indicating that mycosubtilin strongly reduced the development of B. lactucae. The mixture mycosubtilin/surfactin (50:50 mg L?1) gave the same result on B. lactucae development as 100 mg L?1 of mycosubtilin. The results of ecotoxicity as well as those obtained in biocontrol experiments indicated that the presence of surfactin enhances the biological activities of mycosubtilin. Mycosubtilin and surfactin were thus found to be efficient compounds against lettuce downy mildew, with low toxicity compared to the toxicity values of chemical pesticides. This is the first time that Bacillus lipopeptides have been tested in vivo against an obligate pathogen and that ecotoxic values have been given for surfactin and mycosubtilin.  相似文献   

18.
19.
20.
Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5′ and 3′ delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L?1 h?1) over the control strain XP (81 mg L?1 h?1). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L?1 h?1 and titre of 47 g L?1 of xylitol at 12 g L?1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol?1) was significantly lower than glucose (23.7 mol mol?1). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号