首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although somatic cell nuclear transfer (NT) and in vitro fertilization (IVF) have the potential to produce genetically superior livestock, considerable numbers of abnormally large animals, including sheep and cattle affected by "large offspring syndrome" (LOS), have been produced by these assisted reproductive technologies (ART). Interestingly, these phenotypes are reminiscent of Beckwith-Wiedemann syndrome (BWS) in humans, which is an imprinting disorder characterized by pre- and/or postnatal overgrowth. The imprinting control region KvDMR1, which regulates the coordinated expression of growth control genes such as Cdkn1c, is known to be aberrantly hypomethylated in BWS. Therefore, we hypothesized that aberrant imprinting in this region could contribute to LOS. In this study, we analyzed the DNA methylation status of the Kcnq1ot1/Cdkn1c and Igf2/H19 domains on bovine chromosome 29 and examined the coordinated expression of imprinted genes surrounding them in seven calves derived by NT (which showed signs of developmental abnormality), two calves conceived by IVF (both developmentally abnormal), and three conventional calves that died of unrelated causes. Abnormal hypomethylation status at an imprinting control region of Kcnq1ot1/Cdkn1c domain was observed in two of seven NT-derived calves and one of two IVF-derived calves in almost all organs. Moreover, increased expression of Kcnq1ot1 and diminished expression of Cdkn1c were observed by RT-PCR analysis. This study is the first to describe the abnormal hypomethylation of the KvDMR1 domain and subsequent changes in the gene expression of Kcnq1ot1 and Cdkn1c in a subset of calves produced by ART. Our findings provide strong evidence for a role of altered imprinting control in the development of LOS in bovines.  相似文献   

3.
4.
5.
The mechanisms underlying the phenomenon of genomic imprinting are poorly understood. Accumulating evidence suggests that imprinting control regions (ICR) associated with the imprinted genes play an important role in creation of imprinted expression domains by propagating parent-of-origin-specific epigenetic modifications. We have recently documented that the Kcnq1 ICR unidirectionally blocks enhancer-promoter communications in a methylation-dependent manner in Hep-3B and Jurkat cell lines. In this report we show that the Kcnq1 ICR harbors bidirectional silencing and methylation-sensitive methylation-spreading properties in a lineage-specific manner. We fine map both of these functions to two critical regions, and loss of one these regions results in loss of silencing as well as methylation spreading. The cell type-specific functions of the Kcnq1 ICR suggest binding of cell type-specific factors to various cis elements within the ICR. Fine mapping of the silencing and methylation-spreading functions to the same regions explains the fact that the silencing factors associated with this region primarily repress the neighboring genes and that methylation occurs as a consequence of silencing.  相似文献   

6.
7.
8.
The Kcnq1 imprinting control region (ICR) located in intron 10 of the Kcnq1 gene is unmethylated on the paternal chromosome and methylated on the maternal chromosome and has been implicated in the manifestation of parent-of-origin-specific expression of six neighboring genes. The unmethylated Kcnq1 ICR harbors bidirectional silencer activity and drives expression of an antisense RNA, Kcnq1ot1, which overlaps the Kcnq1 coding region. To elucidate whether the Kcnq1ot1 RNA plays a role in the bidirectional silencing activity of the Kcnq1 ICR, we have characterized factor binding sites by genomic footprinting and tested the functional consequence of various deletions of these binding sites in an episome-based system. Deletion of the elements necessary for Kcnq1ot1 promoter function resulted in the loss of silencing activity. Furthermore, interruption of Kcnq1ot1 RNA production by the insertion of a polyadenylation sequence downstream of the promoter also caused a loss of both silencing activity and methylation spreading. Thus, the antisense RNA plays a key role in the silencing function of the ICR. Double-stranded RNA (dsRNA)-mediated RNA interference is unlikely to be involved, as the ICR is active irrespective of the simultaneous production of dsRNA from the genes it silences.  相似文献   

9.
10.
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.  相似文献   

11.
Lsh controls silencing of the imprinted Cdkn1c gene   总被引:2,自引:0,他引:2  
Epigenetic regulation, such as DNA methylation plays an important role in the control of imprinting. Lsh, a member of the SNF2 family of chromatin remodeling proteins, controls DNA methylation in mice. To investigate whether Lsh affects imprinting, we examined CpG methylation and allelic expression of individual genes in Lsh-deficient embryos. We report here that loss of Lsh specifically alters expression of the Cdkn1c gene (also known as p57(Kip2)) but does not interfere with maintenance of imprints at the H19, Igf2, Igf2r, Zac1 and Meg9 genes. The reactivation of the silenced paternal Cdkn1c allele correlates closely with a loss of CpG methylation at the 5' DMR at the Cdkn1c promoter, whereas KvDMR1 and DMRs of other imprinted genes were not significantly changed. Chromatin immunoprecipitations demonstrate a direct association of Lsh with the 5' DMR at the Cdkn1c promoter, but not with Kv DMR1 or other imprinted loci. These data suggest that methylation of the 5' DMR plays an important role in the imprinting of the Cdkn1c gene. Furthermore, it suggests that Lsh is not required for maintenance of imprinting marks in general, but is only crucial for imprinting at distinct genomic sites.  相似文献   

12.
13.
The cdk inhibitor p57kip2, encoded by the Cdkn1c gene, plays a critical role in mammalian development and in the differentiation of several tissues. Cdkn1c protein levels are carefully regulated via imprinting and other epigenetic mechanisms affecting both the promoter and distant regulatory elements, which restrict its expression to particular developmental phases or specific cell types. Inappropriate activation of these regulatory mechanisms leads to Cdkn1c silencing, causing growth disorders and cancer. We have previously reported that, in skeletal muscle cells, induction of Cdkn1c expression requires the binding of the bHLH myogenic factor MyoD to a long-distance regulatory element within the imprinting control region KvDMR1. Interestingly, MyoD binding to KvDMR1 is prevented in myogenic cell types refractory to the induction of Cdkn1c. In the present work, we took advantage of this model system to investigate the epigenetic determinants of the differential interaction of MyoD with KvDMR1. We show that treatment with the DNA demethylating agent 5-azacytidine restores the binding of MyoD to KvDMR1 in cells unresponsive to Cdkn1c induction. This, in turn, promotes the release of a repressive chromatin loop between KvDMR1 and Cdkn1c promoter and, thus, the upregulation of the gene. Analysis of the chromatin status of Cdkn1c promoter and KvDMR1 in unresponsive compared to responsive cell types showed that their differential responsiveness to the MyoD-dependent induction of the gene does not involve just their methylation status but, rather, the differential H3 lysine 9 dimethylation at KvDMR1. Finally, we report that the same histone modification also marks the KvDMR1 region of human cancer cells in which Cdkn1c is silenced. On the basis of these results, we suggest that the epigenetic status of KvDMR1 represents a critical determinant of the cell type-restricted expression of Cdkn1c and, possibly, of its aberrant silencing in some pathological conditions.  相似文献   

14.
Epigenetic marks at cis acting imprinting control regions (ICRs) regulate parent of origin-specific expression of multiple genes in imprinted gene clusters. Epigenetic marks are acquired during gametogenesis and maintained faithfully thereafter. However, the mechanism by which differential epigenetic marks are established and maintained at ICRs is currently unclear. By using Kcnq1 ICR as a model system, we have investigated the functional role of genetic signatures in the acquisition and maintenance of epigenetic marks. Kcnq1 ICR is methylated on the maternal chromosome but remains unmethylated on the paternal chromosome. Here, we show that a paternal allele of Kcnq1 ICR lacking the Kcnq1ot1 promoter remains unmethylated during spermatogenesis; however, it becomes methylated specifically during pre-implantation development. Analysis of the chromatin structure at the paternal ICR in spermatogenic cells and in E13.5 embryonic tissues revealed that the ICRs of both wild type and mutant mice are enriched with H3K4me2 in spermatiogenic cells of the testicular compartment, but the mutant ICR lost H3K4me2 specifically in epididymal sperm and an increase in repressive marks was observed in embryonic tissues. Interestingly, we also detected a decrease in nucleosomal histone levels at the mutant ICR in comparison to the wild-type ICR in epididymal sperm. Taken together, these observations suggest that the Kcnq1ot1 promoter plays a critical role in establishing an epigenetic memory in the male germline by ensuring that the paternal allele remains in an unmethylated state during pre-implantation development.  相似文献   

15.
16.
17.
18.
长非编码RNA(lnc RNA)是长度大于200 bp的一类非编码蛋白的RNA,因其在基因组中含量巨大以及重要的生物学功能引起了学术界的广泛关注.基因组印记是一种表观遗传现象,lnc RNAs通过建立靶基因的印记而发挥重要的生物功能.基因组印记可以用来研究lnc RNAs在转录和转录后水平调控基因表达的分子机制.本文选取6个印记机制研究比较透彻的印记区域,包括Kcnq1/Cdkn1c、Igf2r/Airn、Prader-Willi(PWS)/Angelman(AS)、Snurf/Snrpn、Dlk1-Dio3和H19/Igf2.通过介绍包括基因间lnc RNAs(H19、Ipw和Meg3)、反义lnc RNAs(Kcnq1ot1、Airn、Ube3a-ATS)和增强子lnc RNAs(IG-DMR e RNAs)在内的3种类型lnc RNAs在印记调控中的作用,从而了解lnc RNAs通过顺式或(/和)反式作用多种机制调控亲本特异性靶基因的表达.了解印记基因簇中lnc RNAs的作用方式将有助于我们揭示lnc RNAs在整个基因组中的作用机制.  相似文献   

19.

Background  

Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号