首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron microscopy of bacterized and axenic trophozoites of Entamoeba histolytica showed only slight differences in ultrastructure between the two. As with other species of Entamoeba so far studied, this species lacks typical mitochondrial structures and formed endoplasmic reticulum. Dense clusters of glycogen particles are especially characteristic in axenic amebas. Microtubular structures 360 A in diameter appear randomly oriented in both bacterized and axenic trophozoites. Ribonucleoprotein (RNP) bodies are of two typical forms—elongate, parallel arrays of helices (the classical chromatoid bodies), and short helical fragments. Both kinds of helix show a recurring pitch angle of 68–80° and an over-all diameter of 480 A. RNP particles comprising the helices average 180 A in diameter. The longitudinal axes of adjacent helices are 440 A apart. Following RNase digestion of water-soluble methacrylate sections, helices show a core approximately 60 A in diameter. Short helices are also associated with digestive vacuoles. Free RNP particles per se are never seen within digestive vacuoles, but intact short helices are frequently detected closely associated with the external membrane of digestive vacuoles. In some cases, continuation of externally intact helical forms could be related to filamentous material within the vacuole. Acid phosphomonoesterase activity could be demonstrated within digestive vacuoles where deposition of reaction product is especially intense on the filamentous material.  相似文献   

2.
Kanaori K  Tamura Y  Wada T  Nishi M  Kanehara H  Morii T  Tajima K  Makino K 《Biochemistry》1999,38(49):16058-16066
The duplex structures of the stereoregulated phosphorothioate DNAs, [R(p),R(p)]- and [S(p),S(p)]-[d(GC(ps)T(ps)ACG)] (ps, phosphorothioate; PS-DNA), with their complementary RNA have been investigated by combined use of (1)H NMR and restrained molecular dynamics calculation. Compared to those obtained for the unmodified duplex structures (PO-DNA.RNA), the NOE cross-peak intensities are virtually identical for the PS-DNA.RNA hybrid duplexes. The structural analysis on the basis of the NOE restraints reveals that all of the three DNA.RNA duplexes take a A-form conformation and that there is no significant difference in the base stacking for the DNA.RNA hybrid duplexes. On the other hand, the NOE cross-peak intensities of the protons around the central T(ps)A step of the PS-DNA.DNA duplexes are apparently different from those of PO-DNA. DNA. The chemical shifts of H8/6 and H1' at the T(ps)A step are also largely different among PS-DNA.DNAs and PO-DNA.DNA, suggesting that the DNA.DNA structure is readily changed by the introduction of the phosphorothioate groups to the central T(p)A step. The structure calculations indicate that all of these DNA.DNA duplexes are B-form although there exist some small differences in helical parameters between the [R(p),R(p)]- and [S(p),S(p)]PS-DNA.DNA duplexes. The melting temperatures (T(m)) were determined for all of the duplexes by plotting the chemical shift change of isolated peaks as a function of temperature. For the PS-DNA.RNA hybrid duplexes, the [S(p),S(p)] isomer is less stable than the [R(p),R(p)] isomer while this trend is reversed for the PS-DNA.DNA duplexes. Consequently, although the PS-DNA.RNA duplexes take the similar A-form structure, the duplex stability is different between PS-DNA.RNA duplexes. The stability of the DNA.RNA duplexes may not be governed by the A-form structure itself but by some other factors such as the hydration around the phosphorothioate backbone, although the T(m) difference of the DNA.DNA duplexes could be explained by the structural factor.  相似文献   

3.
We present a method for the computer-based iterative assembly of native-like tertiary structures of helical proteins from alpha-helical fragments. For any pair of helices, our method, called MATCHSTIX, first generates an ensemble of possible relative orientations of the helices with various ways to form hydrophobic contacts between them. Those conformations having steric clashes, or a large radius of gyration of hydrophobic residues, or with helices too far separated to be connected by the intervening linking region, are discarded. Then, we attempt to connect the two helical fragments by using a robotics-based loop-closure algorithm. When loop closure is feasible, the algorithm generates an ensemble of viable interconnecting loops. After energy minimization and clustering, we use a representative set of conformations for further assembly with the remaining helices, adding one helix at a time. To efficiently sample the conformational space, the order of assembly generally proceeds from the pair of helices connected by the shortest loop, followed by joining one of its adjacent helices, always proceeding with the shorter connecting loop. We tested MATCHSTIX on 28 helical proteins each containing up to 5 helices and found it to heavily sample native-like conformations. The average rmsd of the best conformations for the 17 helix-bundle proteins that have 2 or 3 helices is less than 2 A; errors increase somewhat for proteins containing more helices. Native-like states are even more densely sampled when disulfide bonds are known and imposed as restraints. We conclude that, at least for helical proteins, if the secondary structures are known, this rapid rigid-body maximization of hydrophobic interactions can lead to small ensembles of highly native-like structures. It may be useful for protein structure prediction.  相似文献   

4.
We present the crystalline organization of 33 all-AT deoxyoligonucleotide duplexes, studied by x-ray diffraction. Most of them have very similar structures, with Watson-Crick basepairs and a standard average twist close to 36 degrees. The molecules are organized as parallel columns of stacked duplexes in a helical arrangement. Such organization of duplexes is very regular and repetitive: all sequences show the same pattern. It is mainly determined by the stacking of the terminal basepairs, so that the twist in the virtual TA base step between neighbor duplexes is always negative, approximately -22 degrees. The distance between the axes of parallel columns is practically identical in all cases, approximately 26 A. Interestingly, it coincides with that found in DNA viruses and fibers in their hexagonal phase. It appears to be a characteristic distance for ordered parallel DNA molecules. This feature is due to the absence of short range intermolecular forces, which are usually due to the presence of CG basepairs at the end of the oligonucleotide sequence. The duplexes apparently interact only through their diffuse ionic atmospheres. The results obtained can thus be considered as intermediate between liquid crystals, fibers, and standard crystal structures. They provide new information on medium range DNA-DNA interactions.  相似文献   

5.
The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G.T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with O2 of T and O6 of G with N3 of T. The X-ray analyses establish that the G.T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G.A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

6.
New wrinkles on polynucleotide duplexes   总被引:2,自引:0,他引:2  
Most fibrous polynucleotides of general sequence exhibit secondary structures that are described adequately by regular helices with a repeated motif of only one nucleotide. Such helices exploit the fact that A:T, T:A, G:C, and C:G pairs are essentially isomorphous and have dyadically-related glycosylic bonds. Polynucleotides with regularly repeated base-sequences sometimes assume secondary structures with larger repeated motifs which reflect these base-sequences. The dinucleotide units of the Z-like forms of poly d(As4T):poly d(As4T), poly d(AC):poly d(GT) and poly d(GC):poly d(GC) are dramatic instances of this phenomenon. The wrinkled B and D forms of poly d(GC):poly d(GC) and poly d(AT):poly d(AT) are just as significant but more subtle examples. It is possible also to trap more exotic secondary structures in which the molecular asymmetric unit is even larger. There is, for example, a tetragonal form of poly d(AT):poly d(AT) which has unit cell dimensions a = b = 1.71nm, c = 7.40nm, gamma = 90 degrees. The c dimension corresponds to the pitch of a molecular helix which accommodates 24 successive nucleotide pairs arranged as a 4(3) helix of hexanucleotide duplexes. The great variety of nucleotide conformations which occur in these large asymmetric units has prompted us to describe them as pleiomeric, a term used in botany to describe whorls having more than the usual number of structures. Pleiomeric DNAs need not contain nucleotide conformations that are very different from one another. On the other hand, DNAs carrying nucleotides of very different conformation must be pleiomeric. This is because 4 nucleotides of different conformation are needed to join patches of secondary structure which are as different as A or B or Z. Differences in nucleotide structures may occur also between chains rather than within chains. In poly d(A):poly d(T), the purine nucleotides all contain C3'-endo furanose rings and the pyrimidine nucleotides C2'-endo rings. Analogous heteronomous structures may exist in DNA-RNA hybrids although these duplexes are also found to have symmetrical A-type conformations.  相似文献   

7.
STM and AFM images of nucleosome DNA under water   总被引:5,自引:0,他引:5  
We have imaged DNA from the calf thymus nucleosome using a scanning tunneling microscope (STM) operated in water. The fragments are deposited onto the interface between a buffer solution and an epitaxially grown gold surface using an electrochemical tecnique. Most of the fragments are fairly straight, and when individual polymers can be identified, their length is consistent with the expected 146 basepairs (approximately 500 A). The resolution is often adequate to show signs of the 36 A helical pitch. Some images show a structure which appears to have abrupt kinks of the sort predicted by Crick and Klug (Nature 255, 530-533, 1975). In order to check that this shape is not a consequence of binding to underlying structure on the gold substrate, we have also made images of kinked structures using an atomic force microscope (AFM) with the DNA bound to glass.  相似文献   

8.
Holliday junctions are four-stranded DNA complexes that are formed during recombination and related DNA repair events. Much work has focused on the overall structure and properties of four-way junctions in solution, but we are just now beginning to understand these complexes at the atomic level. The crystal structures of two all-DNA Holliday junctions have been determined recently from the sequences d(CCGGGACCGG) and d(CCGGTACCGG). A detailed comparison of the two structures helps to distinguish distortions of the DNA conformation that are inherent to the cross-overs of the junctions in this crystal system from those that are consequences of the mismatched dG.dA base-pair in the d(CCGGGACCGG) structure. This analysis shows that the junction itself perturbs the sequence-dependent conformational features of the B-DNA duplexes and the associated patterns of hydration in the major and minor grooves only minimally. This supports the idea that a DNA four-way junction can be assembled at relatively low energetic cost. Both structures show a concerted rotation of the adjacent duplex arms relative to B-DNA, and this is discussed in terms of the conserved interactions between the duplexes at the junctions and further down the helical arms. The interactions distant from the strand cross-overs of the junction appear to be significant in defining its macroscopic properties, including the angle relating the stacked duplexes across the junction.  相似文献   

9.
Y Itojima  Y Ogawa  K Tsuno  N Handa  H Yanagawa 《Biochemistry》1992,31(20):4757-4765
Phospholipid-nucleoside conjugates containing two myristoyl groups and a nucleotidyl group, collectively designated as dimyristoyl-5'-phosphatidylnucleosides, were enzymatically synthesized and their self-organization, morphology, and physicochemical properties investigated. The dimyristoyl-5'-phosphatidylnucleosides spontaneously assembled to form various types of helical strands. Neutral and alkaline solutions of dimyristoyl-5'-phosphatidyladenosine (DMPA) produced multihelical strands. The multihelical strand consisted of several single helical strands of approximately 50 A in diameter and helical pitch approximately 100 A. DMPA produced cigar-like scrolls (tubular structures) in acidic solution, which consisted of many double-helical strands aligned parallel to each other. Diacyl-5'-phosphatidyladenosine with a shorter chain length as long as an alkyl group, dilauroyl-5'-phosphatidyladenosine (DLPA), didecanoyl-5'-phosphatidyladenosine (DDPA), and dioctanoyl-5'-phosphatidyladenosine (DOPA) formed extended tape structures having double-helical strands aligned parallel. Dimyristoyl-5'-phosphatidylcytidine (DMPC) produced network structures at an early stage, which were slowly transformed into multihelical strands. The multihelical strands contained some single-helical strands of approximately 55 A in diameter and helical pitch approximately 150 A. DMPA produced no definite helical structure in acidic solution but rather large lamellar structures. Dimyristoyl-5'-phosphatidyluridine (DMPU) produced crystalline platelet structures of approximately 1000 A in width in both alkaline and acidic solution. A 1:1 mixture of DMPA and DMPU formed a new hybrid helical strand having a wide and thick ribbon structure of approximately 300 A in diameter and helical pitch approximately 2000 A. The formation of different helical strands and effects of chain lengths of alkyl groups and a nucleotidyl group in phospholipid-nucleoside conjugates on that of helical strands in aqueous solution are discussed.  相似文献   

10.
Freeze-etch electron microscopy of pure RecA protein aggregates, as well as of RecA protein complexes on single-stranded and double-stranded DNA formed with various nucleotides, has permitted a clearer discrimination between the two different helical polymers that this protein forms. Both are continuous, single-start, right-handed helices; however, the form observed when ATP or non-hydrolyzable ATP analogs are present has a pitch of 9.5 nm and a diameter of 10 nm, while the other form, observed in the absence of ATP or its analogs, or in the presence of ADP, has a pitch of 6 nm and a diameter of 12 nm. The former "long pitch" helix is found only when RecA protein is bound to DNA. The latter "short pitch" helix is also observed in pure RecA protein polymers (also termed rods) and in the needle-like paracrystals of RecA protein that form in the presence of magnesium or spermidine ions, representing bundles of rods closely packed in register. Addition of ATP or non-hydrolyzable ATP analogs in the absence of DNA dissociates the pure RecA protein crystals, as well as individual helical rods, into short curvilinear chains of attached monomers. These chains typically form closed, circular rings of 7(+/- 1) protein monomers, similar in construction to a single turn of the RecA protein helix, but significantly broader in diameter. The role of ATP in interconverting the various polymeric forms of RecA protein is discussed within the context that ATP functions as a reversible allosteric effector of RecA protein, much as it mediates reversible conformational changes in other vectoral motor proteins such as myosin, dynein, kinesin and the 70,000 Mr "heat shock" ATPases. We discuss how cyclic conversions back and forth between the short- and long-pitch conformations of RecA protein could mediate in reversible single-stranded and double-stranded DNA interactions during the search for homology.  相似文献   

11.
Abstract

The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G·T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with 02 of T and 06 of G with N3 of T. The X-ray analyses establish that the G·T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G·A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

12.
All possible right and left double helical structures which may exist in short fragments as well in polymeric DNA have been obtained on the basis of a developed rigorous and accurate method of conformational analysis of DNA. In polymeric DNA only right regular double helices are possible with preference of B-form that is the main biological form of DNA. In contrast, for short fragments the left and right helices have practically the same energies providing some physical ground for side-by-side form, which biologically is possible as a recombination form and maybe as a replication form.  相似文献   

13.
Bergeron LJ  Sen K  Sen D 《Biochimie》2008,90(7):1064-1073
The property of charge (electron hole) flow in DNA duplexes has been the subject of intensive study. RNA-DNA heteroduplexes have also been investigated; however, little information exists on the conductive properties of purely RNA duplexes. In investigating the relative conductive properties of a three molecule DNA-DNA duplex design, using piperidine and aniline to break strands at modified bases, we observed that duplexes with guanine-rich termini generated a large oxidative end-effect, which could serve as a highly sensitive reporter of charge flow through the duplexes. The end-effect was found faithfully to report attenuations in charge flow due to certain single-base mismatches within a duplex. Comparative charge flow experiments on DNA-DNA and RNA-RNA duplexes found large end-effects from both, suggesting that the A and B family of double helices conduct charge comparably. The sheer magnitude of the end-effect, and its high sensitivity to helical imperfections, suggest that it may be exploited as a sensitive reporter for DNA mismatches, as well as a versatile device for studying the structure, folding, and dynamics of complexly folded RNAs and DNAs.  相似文献   

14.
A detailed theoretical study has been carried out to examine the modes of DNA-DNA interactions on the basis of hard-sphere contact criteria. Two helices of identical structure and length are oriented side-by-side and their relative positions are controlled by translations along and rotations about specific axes. Short atomic contacts between pairs of atoms in the structures are assessed and contact-free configurations are compiled. The computed contact-free arrangements of A, B, and Z double helices are found to be remarkably similar to the packing motifs observed in DNA crystals and stretched fibers. Equally interesting in the study are the broad ranges of sterically acceptable arrangements that preserve the overall packing morphology of neighboring duplexes: Among the most notable morphological features in the helical complexes are extended "super" major and minor grooves which might facilitate the wrapping and packaging of DNA chains in supramolecular assemblies. The hard-sphere computations, however, are insufficient for quantitative interpretation of the packing of DNA helices in the solid state. The results are, nevertheless, a useful starting point for energy based studies as well as relevant to the analysis of long-range interactions in DNA supercoils and cruciforms.  相似文献   

15.
Plasmonic nanoparticles (NPs) adsorbing onto helical bacteria can lead to formation of NP helicoids with micron scale pitch. Associated chiroptical effects can be utilized as bioanalytical tool for bacterial detection and better understanding of the spectral behavior of helical self-assembled structures with different scales. Here, we report that enantiomerically pure helices with micron scale of chirality can be assembled on Campylobacter jejuni, a helical bacterium known for severe stomach infections. These organisms have right-handed helical shapes with a pitch of 1–2 microns and can serve as versatile templates for a variety of NPs. The bacteria itself shows no observable rotatory activity in the visible, red, and near-IR ranges of electromagnetic spectrum. The bacterial dispersion acquires chiroptical activity at 500–750 nm upon plasmonic functionalization with Au NPs. Finite-difference time-domain simulations confirmed the attribution of the chiroptical activity to the helical assembly of gold nanoparticles. The position of the circular dichroism peaks observed for these chiral structures overlaps with those obtained before for Au NPs and their constructs with molecular and nanoscale chirality. This work provides an experimental and computational pathway to utilize chiroplasmonic particles assembled on bacteria for bioanalytical purposes.  相似文献   

16.
Mazur AK 《Biophysical journal》2006,91(12):4507-4518
A number of intriguing aspects in dynamics of double-helical DNA is related to the coupling between its macroscopic and microscopic states. A link between the elastic properties of long DNA chains and their atom-level dynamics can be established by comparing the worm-like chain model of polymer DNA with the conformational ensembles produced by molecular dynamics simulations. This problem is complicated by the complexity of the DNA structure, the small size of DNA fragments, and relatively short trajectory durations accessible in computer simulations of microscopic DNA dynamics. A careful study of all these aspects has been performed by using longer DNA fragments and increased durations of MD trajectories as compared to earlier such investigations. Special attention is paid to the necessary conditions and criteria of time convergence, and the possibility to increase the sampling by using constrained DNA models and simplified simulation conditions. It is found that dynamics of 25-mer duplexes with regular sequences agrees well with the worm-like chain theory and that accurate evaluation of DNA elastic parameters requires at least two turns of the double helix and approximately 20-ns duration of trajectories. Bond length and bond-angle constraints affect the estimates within numerical errors. In contrast, simplified treatment of solvation can strongly change the observed elastic parameters of DNA. The elastic parameters evaluated for AT- and GC-alternating duplexes reasonably agree with experimental data and suggest that, in different basepair sequences, the torsional and stretching elasticities vary stronger than the bending stiffness.  相似文献   

17.
A survey of literature for the various types of helices experimentally observed in high-resolution single crystal x-ray diffraction analyses of peptides has allowed to determine accurate conformational and helical parameters for the various secondary structures such as the alpha-helix, the 3(10)-helix, the fully extended conformation (2(5)-helix) and the beta-bend ribbon spiral. For each of these structures the characteristic phi, psi conformational parameters, n, the number of residues per turn, h, the height per residues and p, the pitch of the helix are described.  相似文献   

18.
Previously, using concentrated solutions of PCR products of five different genes, we described the appearance in these solutions of DNA structures with molecular weights approximately twice greater than that of double-strand (ds) fragments and with even higher molecular weight. Since this phenomenon was shown to be not dependent on the size or sequence of the DNA fragments, we suggested that it is due to interaction of DNA duplexes. The double-sized dsDNA complex containing four polynucleotide strands of two DNA fragments was named a "tetramer". Our present work is devoted to elucidation of peculiarities of tetramer formation and its structure in solutions of a purified PCR product of p53 cDNA. We found that the intensity of tetramer formation depends on the concentration of the PCR product in solution. Three subsequent purifications of the PCR product were performed using DNA-binding matrix, but the tetramers appeared again after every procedure. After purification of PCR product preliminarily treated with S1-nuclease, tetramers appeared again, indicating that these structures are formed from dsDNA fragments. Purification of the tetramers on DNA-binding matrix led to the appearance of the initial dsDNA fragments as the main DNA structure. When electroelution and column filtration by centrifugation were used, the purification procedure was speeded up, and a solution with a higher amount of the tetramer was obtained. Electron microscopy revealed the presence of four-stranded symmetrical structures with crossing chains known as Holliday junctions. Thus, for the first time the ability of homologous dsDNA fragments to interact with the formation of Holliday junctions without participation of cell proteins has been demonstrated.  相似文献   

19.
Structural effect of the anticancer agent 6-thioguanine on duplex DNA   总被引:2,自引:2,他引:0  
The incorporation of 6-thioguanine (S6G) into DNA is an essential step in the cytotoxic activity of thiopurines. However, the structural effects of this substitution on duplex DNA have not been fully characterized. Here, we present the solution structures of DNA duplexes containing S6G opposite thymine (S6G·T) and opposite cytosine (S6G·C), solved by high-resolution NMR spectroscopy and restrained molecular dynamics. The data indicate that both duplexes adopt right-handed helical conformations with all Watson–Crick hydrogen bonding in place. The S6G·T structures exhibit a wobble-type base pairing at the lesion site, with thymine shifted toward the major groove and S6G displaced toward the minor groove. Aside from the lesion site, the helices, including the flanking base pairs, are not highly perturbed by the presence of the lesion. Surprisingly, thermal dependence experiments suggest greater stability in the S6G-T mismatch than the S6G-C base pair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号