首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In budding yeast and humans, cohesion establishment during S phase requires the acetyltransferase Eco1/Esco1-2, which acetylates the cohesin subunit Smc3 on two conserved lysine residues. Whether Smc3 is the sole Eco1/Esco1-2 effector and how Smc3 acetylation promotes cohesion are unknown. In fission yeast (Schizosaccharomyces pombe), as in humans, cohesin binding to G(1) chromosomes is dynamic and the unloading reaction is stimulated by Wpl1 (human ortholog, Wapl). During S phase, a subpopulation of cohesin becomes stably bound to chromatin in an Eso1 (fission yeast Eco1/Esco1-2)-dependent manner. Cohesin stabilization occurs unevenly along chromosomes. Cohesin remains largely labile at the rDNA repeats but binds mostly in the stable mode to pericentromere regions. This pattern is largely unchanged in eso1Δ wpl1Δ cells, and cohesion is unaffected, indicating that the main Eso1 role is counteracting Wpl1. A mutant of Psm3 (fission yeast Smc3) that mimics its acetylated state renders cohesin less sensitive to Wpl1-dependent unloading and partially bypasses the Eso1 requirement but cannot generate the stable mode of cohesin binding in the absence of Eso1. Conversely, nonacetylatable Psm3 reduces the stable cohesin fraction and affects cohesion in a Wpl1-dependent manner, but cells are viable. We propose that Psm3 acetylation contributes to Eso1 counteracting of Wpl1 to secure stable cohesin interaction with postreplicative chromosomes but that it is not the sole molecular event by which this occurs.  相似文献   

2.
Sister-chromatid cohesion is mediated by cohesin, a ring-shape complex made of four core subunits called Scc1, Scc3, Smc1, and Smc3 in Saccharomyces cerevisiae (Rad21, Psc3, Psm1, and Psm3 in Schizosaccharomyces pombe). How cohesin ensures cohesion is unknown, although its ring shape suggests that it may tether sister DNA strands by encircling them . Cohesion establishment is a two-step process. Cohesin is loaded on chromosomes before replication and cohesion is subsequently established during S phase. In S. cerevisiae, cohesin loading requires a separate complex containing the Scc2 and Scc4 proteins. Cohesin rings fail to associate with chromatin and cohesion can not establish when Scc2 is impaired . The mechanism of loading is unknown, although some data suggest that hydrolysis of ATP bound to Smc1/3 is required . Scc2 homologs exist in fission yeast (Mis4), Drosophila, Xenopus, and human . By contrast, no homolog of Scc4 has been identified so far. We report here on the identification of fission yeast Ssl3 as a Scc4-like factor. Ssl3 is in complex with Mis4 and, as a bona fide loading factor, Ssl3 is required in G1 for cohesin binding to chromosomes but dispensable in G2 when cohesion is established. The discovery of a functional homolog of Scc4 indicates that the machinery of cohesin loading is conserved among eukaryotes.  相似文献   

3.
4.
Cohesin complex mediates cohesion between sister chromatids, which promotes high-fidelity chromosome segregation. Eco1p acetylates the cohesin subunit Smc3p during S phase to establish cohesion. The current model posits that this Eco1p-mediated acetylation promotes establishment by abrogating the ability of Wpl1p to destabilize cohesin binding to chromosomes. Here we present data from budding yeast that is incompatible with this Wpl1p-centric model. Two independent in vivo assays show that a wpl1∆ fails to suppress cohesion defects of eco1∆ cells. Moreover, a wpl1∆ also fails to suppress cohesion defects engendered by blocking just the essential Eco1p acetylation sites on Smc3p (K112, K113). Thus removing WPL1 inhibition is insufficient for generating cohesion without ECO1 activity. To elucidate how ECO1 promotes cohesion, we conducted a genetic screen and identified a cohesion activator mutation in the SMC3 head domain (D1189H). Smc3-D1189H partially restores cohesion in eco1∆ wpl1∆ or eco1 mutant cells but robustly restores cohesion in cells blocked for Smc3p K112 K113 acetylation. These data support two important conclusions. First, acetylation of the K112 K113 region by Eco1p promotes cohesion establishment by altering Smc3p head function independent of its ability to antagonize Wpl1p. Second, Eco1p targets other than Smc3p K112 K113 are necessary for efficient establishment.  相似文献   

5.
Chromosome stability depends on accurate chromosome segregation and efficient DNA double-strand break (DSB) repair. Sister chromatid cohesion, established during S phase by the protein complex cohesin, is central to both processes. In the absence of cohesion, chromosomes missegregate and G2-phase DSB repair fails. Here, we demonstrate that G2-phase repair also requires the presence of cohesin at the damage site. Cohesin components are shown to be recruited to extended chromosome regions surrounding DNA breaks induced during G2. We find that in the absence of functional cohesin-loading proteins (Scc2/Scc4), the accumulation of cohesin at DSBs is abolished and repair is defective, even though sister chromatids are connected by S phase generated cohesion. Evidence is also provided that DSB induction elicits establishment of sister chromatid cohesion in G2, implicating that damage-recruited cohesin facilitates DNA repair by tethering chromatids.  相似文献   

6.
Sister chromatid cohesion depends on cohesin [1-3]. Cohesin associates with chromatin dynamically throughout interphase [4]. During DNA replication, cohesin establishes cohesion [5], and this process coincides with the generation of a cohesin subpopulation that is more stably bound to chromatin [4]. In mitosis, cohesin is removed from chromosomes, enabling sister chromatid separation [6]. How cohesin associates with chromatin and establishes cohesion is poorly understood. By searching for proteins that are associated with chromatin-bound cohesin, we have identified sororin, a protein that was known to be required for cohesion [7]. To obtain further insight into sororin's function, we have addressed when during the cell cycle sororin is required for cohesion. We show that sororin is dispensable for the association of cohesin with chromatin but that sororin is essential for proper cohesion during G2 phase. Like cohesin, sororin is also needed for efficient repair of DNA double-strand breaks in G2. Finally, sororin is required for the presence of normal amounts of the stably chromatin-bound cohesin population in G2. Our data indicate that sororin interacts with chromatin-bound cohesin and functions during the establishment or maintenance of cohesion in S or G2 phase, respectively.  相似文献   

7.
8.
Pds5 and Wpl1 act as anti-establishment factors preventing sister-chromatid cohesion until counteracted in S-phase by the cohesin acetyl-transferase Eso1. However, Pds5 is also required to maintain sister-chromatid cohesion in G2. Here, we show that Pds5 is essential for cohesin acetylation by Eso1 and ensures the maintenance of cohesion by promoting a stable cohesin interaction with replicated chromosomes. The latter requires Eso1 only in the presence of Wapl, indicating that cohesin stabilization relies on Eso1 only to neutralize the anti-establishment activity. We suggest that Eso1 requires Pds5 to counteract anti-establishment. This allows both cohesion establishment and Pds5-dependent stable cohesin binding to chromosomes.  相似文献   

9.
Replicated DNA molecules are physically connected by cohesin complexes from the time of their synthesis in S-phase until they are segregated during anaphase of the subsequent mitosis or meiosis. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle. In addition, cohesion is also essential during G2-phase of the cell cycle to allow repair of DNA double-strand breaks by homologous recombination. Although cohesion can normally only be established during S-phase, recent work in yeast has shown that DNA double-strand breaks induce the recruitment of cohesin to the damage site and lead to the de novo formation of cohesion at this site. It is unknown if similar mechanisms operate in higher eukaryotes, but in mammalian cells phosphorylation of the cohesin subunit Smc1 by the protein kinase Atm has been shown to be important for DNA repair. We discuss how cohesin and sister chromatid cohesion might facilitate the repair of damaged DNA.  相似文献   

10.
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Cohesin is a protein complex that ties sister DNA molecules from the time of DNA replication until the metaphase to anaphase transition. Current models propose that the association of the Smc1, Smc3, and Scc1/Mcd1 subunits creates a ring-shaped structure that entraps the two sister DNAs [1]. Cohesin is essential for correct chromosome segregation and recombinational repair. Its activity is therefore controlled by several posttranslational modifications, including acetylation, phosphorylation, sumoylation, and site-specific proteolysis. Here we show that cohesin sumoylation occurs at the time of cohesion establishment, after cohesin loading and ATP binding, and independently from Eco1-mediated cohesin acetylation. In order to test the functional relevance of cohesin sumoylation, we have developed a novel approach in budding yeast to deplete SUMO from all subunits in the cohesin complex, based on fusion of the Scc1 subunit to a SUMO peptidase Ulp domain (UD). Downregulation of cohesin sumoylation is lethal, and the Scc1-UD chimeras have a failure in sister chromatid cohesion. Strikingly, the unsumoylated cohesin rings are acetylated. Our findings indicate that SUMO is a novel molecular determinant for the establishment of sister chromatid cohesion, and we propose that SUMO is required for the entrapment of sister chromatids during the acetylation-mediated closure of the cohesin ring.  相似文献   

12.
Cohesin is a protein complex that forms a ring around sister chromatids thus holding them together. The ring is composed of three proteins: Smc1, Smc3 and Scc1. The roles of three additional proteins that associate with the ring, Scc3, Pds5 and Wpl1, are not well understood. It has been proposed that these three factors form a complex that stabilizes the ring and prevents it from opening. This activity promotes sister chromatid cohesion but at the same time poses an obstacle for the initial entrapment of sister DNAs. This hindrance to cohesion establishment is overcome during DNA replication via acetylation of the Smc3 subunit by the Eco1 acetyltransferase. However, the full mechanistic consequences of Smc3 acetylation remain unknown. In the current work, we test the requirement of Scc3 and Pds5 for the stable association of cohesin with DNA. We investigated the consequences of Scc3 and Pds5 depletion in vivo using degron tagging in budding yeast. The previously described DHFR-based N-terminal degron as well as a novel Eco1-derived C-terminal degron were employed in our study. Scc3 and Pds5 associate with cohesin complexes independently of each other and require the Scc1 "core" subunit for their association with chromosomes. Contrary to previous data for Scc1 downregulation, depletion of either Scc3 or Pds5 had a strong effect on sister chromatid cohesion but not on cohesin binding to DNA. Quantity, stability and genome-wide distribution of cohesin complexes remained mostly unchanged after the depletion of Scc3 and Pds5. Our findings are inconsistent with a previously proposed model that Scc3 and Pds5 are cohesin maintenance factors required for cohesin ring stability or for maintaining its association with DNA. We propose that Scc3 and Pds5 specifically function during cohesion establishment in S phase.  相似文献   

13.
Cohesin regulation: fashionable ways to wear a ring   总被引:5,自引:5,他引:0  
Losada A 《Chromosoma》2007,116(4):321-329
Cohesin is a multiprotein complex, conserved from yeast to humans, that mediates sister chromatid cohesion. Its ring-shaped structure first suggested that it may perform its task by embracing the sister chromatids. The interaction of cohesin with chromatin is tightly regulated throughout the cell cycle, and several proteins contribute to cohesin loading and mobilization along DNA, establishment of cohesin-mediated cohesion, and removal of cohesin during mitosis. Recent studies suggest that distinct cohesin populations exist in different chromosomal regions and have particular requirements in their dynamic interaction with chromatin. In this review, I briefly summarize these studies and discuss their implications for current and future models of cohesin behavior.  相似文献   

14.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.  相似文献   

15.
Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin-bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a 'railroad' track morphology. Here, we show that Esco2 deficiency leads to termination of mouse development at pre- and post-implantation stages, indicating that Esco2 functions non-redundantly with Esco1. Esco2 is transiently expressed during S-phase when it localizes to pericentric heterochromatin (PCH). In interphase, Esco2 depletion leads to a reduction in cohesin acetylation and Sororin recruitment to chromatin. In early mitosis, Esco2 deficiency causes changes in the chromosomal localization of cohesin and its protector Sgo1. Our results suggest that Esco2 is needed for cohesin acetylation in PCH and that this modification is required for the proper distribution of cohesin on mitotic chromosomes and for centromeric cohesion.  相似文献   

16.
The multisubunit protein complex cohesin is required to establish cohesion between sister chromatids during S phase and to maintain it during G2 and M phases. Cohesin is essential for mitosis, and even partial defects cause very high rates of chromosome loss. In budding yeast, cohesin associates with specific sites which are distributed along the entire length of a chromosome but are more dense in the vicinity of the centromere. Real-time imaging of individual centromeres tagged with green fluorescent protein suggests that cohesin bound to centromeres is important for bipolar attachment to microtubules. This cohesin is, however, incapable of resisting the consequent force, which leads to sister centromere splitting and chromosome stretching. Meanwhile, cohesin bound to sequences flanking the centromeres prevents sister chromatids from completely unzipping and is required to pull back together sister centromeres that have already split. Cohesin therefore has a central role in generating a dynamic tension between microtubules and sister chromatid cohesion at centromeres, which lasts until chromosome segregation is finally promoted by separin-dependent cleavage of the cohesin subunit Scc1p.  相似文献   

17.
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.  相似文献   

18.
The mechanism of sister chromatid cohesion   总被引:15,自引:0,他引:15  
Each of our cells inherit their genetic information in the form of chromosomes from a mother cell. In order that we obtain the full genetic complement, cells need to ensure that replicated chromosomes are accurately split and distributed during cell division. Mistakes in this process lead to aneuploidies, cells with supernumerous or missing chromosomes. Most aneuploid human embryos are not viable, and if they are, they develop severe birth defects. Aneuploidies later in human life are frequently found associated with the development of malignant cancer. DNA replication during S-phase is linked to segregation of the sister copies in mitosis by sister chromatid cohesion. A chromosomal protein complex, cohesin, holds replicated sister DNA strands together after their synthesis. This allows pairs of replication products to be recognised by the spindle apparatus in mitosis for segregation into opposite direction. At anaphase onset, cohesin is destroyed by a site-specific protease, separase. Here I review what we have learned about the molecular mechanism of sister chromatid cohesion. Cohesin forms a large proteinaceous ring that may hold sister chromatids by encircling and topological trapping. To understand how cohesin links newly synthesised replication products, biochemical assays to study the enzymology of cohesin will be required.  相似文献   

19.
20.
Cohesin, an SMC (structural maintenance of chromosomes) protein-containing complex, governs several important aspects of chromatin dynamics, including the essential chromosomal process of sister chromatid cohesion. The exact mechanism by which cohesin achieves the bridging of sister chromatids is not known. To elucidate this mechanism, we reconstituted a recombinant cohesin complex and investigated its binding to DNA fragments corresponding to natural chromosomal sites with high and low cohesin occupancy in vivo. Cohesin displayed uniform but nonspecific binding activity with all DNA fragments tested. Interestingly, DNA fragments with high occupancy by cohesin in vivo showed strong nucleosome positioning in vitro. We therefore utilized a defined model chromatin fragment (purified reconstituted dinucleosome) as a substrate to analyze cohesin interaction with chromatin. The four-subunit cohesin holocomplex showed a distinct chromatin binding activity in vitro, whereas the Smc1p-Smc3p dimer was unable to bind chromatin. Histone tails and ATP are dispensable for cohesin binding to chromatin in this reaction. A model for cohesin association with chromatin is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号