首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gut commensal bacteria play important roles in the development and homeostasis of intestinal immunity. However, the role of gut commensals in intestinal ischemia/reperfusion (I/R) injury is unclear. To determine the roles of gut commensal bacteria in intestinal IR injury, we depleted gut microbiota with a broad-spectrum antibiotic cocktail and performed mesenteric I/R (M I/R). First, we confirmed that antibiotic treatment completely depleted gut commensal bacteria and diminished the size of secondary lymphoid tissues such as the Peyer's patches. We next found that antibiotic treatment attenuated intestinal injury following M I/R. Depletion of gut commensal bacteria reduced the expression of Toll-like receptor (TLR)2 and TLR4 in the intestine. Both are well-known receptors for gram-positive and -negative bacteria. Decreased expression of TLR2 and TLR4 led to the reduction of inflammatory mediators, such as TNF, IL-6, and cyclooxygenase-2. Intestinal I/R injury is initiated when natural antibodies recognize neo-antigens that are revealed on ischemic cells and activate the complement pathway. Thus we evaluated complement and immunoglobulin (Ig) deposition in the damaged intestine and found that antibiotic treatment decreased the deposition of both C3 and IgM. Interestingly, we also found that the deposition of IgA also increased in the intestine following M I/R compared with control mice and that antibiotic treatment decreased the deposition of IgA in the damaged intestine. These results suggest that depletion of gut commensal bacteria decreases B cells, Igs, and TLR expression in the intestine, inhibits complement activation, and attenuates intestinal inflammation and injury following M I/R.  相似文献   

2.
The intestinal tract is home to nematodes as well as commensal bacteria (microbiota), which have coevolved with the mammalian host. The mucosal immune system must balance between an appropriate response to dangerous pathogens and an inappropriate response to commensal microbiota that may breach the epithelial barrier, in order to maintain intestinal homeostasis. IL-22 has been shown to play a critical role in maintaining barrier homeostasis against intestinal pathogens and commensal bacteria. Here we review the advances in our understanding of the role of IL-22 in helminth infections, as well as in response to commensal and pathogenic bacteria of the intestinal tract. We then consider the relationship between intestinal helminths and gut microbiota and hypothesize that this relationship may explain how helminths may improve symptoms of inflammatory bowel diseases. We propose that by inducing an immune response that includes IL-22, intestinal helminths may enhance the mucosal barrier function of the intestinal epithelium. This may restore the mucosal microbiota populations from dysbiosis associated with colitis and improve intestinal homeostasis.  相似文献   

3.
Mammalian intestinal surfaces are in constant and intimate contact with a vast consortium of indigenous commensal bacteria. As a result, gut epithelia have evolved an array of strategies for limiting bacterial invasion into deeper tissues, helping to preserve the mutually beneficial nature of intestinal host-microbial relationships. In this review, we discuss a growing body of evidence indicating that commensal bacteria are actively involved in shaping the very barriers that confine them to the gut lumen. By modulating epithelial inflammatory responses, antimicrobial protein expression, and tissue repair functions, indigenous microbial populations are essential for the maintenance of healthy mucosal surfaces.  相似文献   

4.
HIV causes rapid CD4+ T cell depletion in the gut mucosa, resulting in immune deficiency and defects in the intestinal epithelial barrier. Breakdown in gut barrier integrity is linked to chronic inflammation and disease progression. However, the early effects of HIV on the gut epithelium, prior to the CD4+ T cell depletion, are not known. Further, the impact of early viral infection on mucosal responses to pathogenic and commensal microbes has not been investigated. We utilized the SIV model of AIDS to assess the earliest host-virus interactions and mechanisms of inflammation and dysfunction in the gut, prior to CD4+ T cell depletion. An intestinal loop model was used to interrogate the effects of SIV infection on gut mucosal immune sensing and response to pathogens and commensal bacteria in vivo. At 2.5 days post-SIV infection, low viral loads were detected in peripheral blood and gut mucosa without CD4+ T cell loss. However, immunohistological analysis revealed the disruption of the gut epithelium manifested by decreased expression and mislocalization of tight junction proteins. Correlating with epithelial disruption was a significant induction of IL-1β expression by Paneth cells, which were in close proximity to SIV-infected cells in the intestinal crypts. The IL-1β response preceded the induction of the antiviral interferon response. Despite the disruption of the gut epithelium, no aberrant responses to pathogenic or commensal bacteria were observed. In fact, inoculation of commensal Lactobacillus plantarum in intestinal loops led to rapid anti-inflammatory response and epithelial tight junction repair in SIV infected macaques. Thus, intestinal Paneth cells are the earliest responders to viral infection and induce gut inflammation through IL-1β signaling. Reversal of the IL-1β induced gut epithelial damage by Lactobacillus plantarum suggests synergistic host-commensal interactions during early viral infection and identify these mechanisms as potential targets for therapeutic intervention.  相似文献   

5.
Toll-like receptors (TLRs) play a crucial role in host defense against microbial infection. The microbial ligands recognized by TLRs are not unique to pathogens, however, and are produced by both pathogenic and commensal microorganisms. It is thought that an inflammatory response to commensal bacteria is avoided due to sequestration of microflora by surface epithelia. Here, we show that commensal bacteria are recognized by TLRs under normal steady-state conditions, and this interaction plays a crucial role in the maintenance of intestinal epithelial homeostasis. Furthermore, we find that activation of TLRs by commensal microflora is critical for the protection against gut injury and associated mortality. These findings reveal a novel function of TLRs-control of intestinal epithelial homeostasis and protection from injury-and provide a new perspective on the evolution of host-microbial interactions.  相似文献   

6.
人体肠道共生着数以万亿计的微生物,肠道微生物在维持宿主正常生理功能中发挥重要作用,其成分和功能变化可导致严重的肠道和全身性疾病。以新一代测序技术和生物信息学分析为基础的元基因组学研究不仅极大地推动了对人类肠道微生物的整体认识,还加深了对肠道微生物代谢产物促进人类健康机理的理解,为肠道炎症、代谢性疾病和癌症等人类疾病的诊断与治疗提供了新思路。就肠道微生物元基因组学与肠道相关疾病的研究进展作一综述。  相似文献   

7.
There is growing evidence that intestinal bacteria are important beneficial partners of their metazoan hosts. Recent observations suggest a strong link between commensal bacteria, host energy metabolism, and metabolic diseases such as diabetes and obesity. As a consequence, the gut microbiota is now considered a "host" factor that influences energy uptake. However, the impact of intestinal bacteria on other systemic physiological parameters still remains unclear. Here, we demonstrate that Drosophila microbiota promotes larval growth upon nutrient scarcity. We reveal that Lactobacillus plantarum, a commensal bacterium of the Drosophila intestine, is sufficient on its own to recapitulate the?natural microbiota growth-promoting effect. L.?plantarum exerts its benefit by acting genetically upstream of the TOR-dependent host nutrient sensing system controlling hormonal growth signaling. Our results indicate that the intestinal microbiota should also be envisaged as a factor that influences the systemic growth of its host.  相似文献   

8.
The intestine is colonised by a vast population of resident bacteria which have established mutualistic relationships with their host throughout evolution, progressing from commensalism to symbiotic interactions. Intestinal bacteria benefit from resources available in their host, but reciprocally provide advantages to their host, by supplying enzymatic activities not encoded in the host genome, by promoting maturation of the intestine and of the gut associated immune system as well as by modifying the host metabolism. The commensal bacteria, although deprived of pathogenic attributes, might however become a danger for the host in case of translocation, acquisition of pathogenic features or via the inappropriate activation of intestinal inflammation. Remarkably, the commensal flora promotes the onset of innate and adaptive immune defences which, in turn, allow to set up a subtle balance between the host and the flora that promotes the symbiosis.  相似文献   

9.
The carbohydrate antigen (glycoantigen) PSA from an intestinal commensal bacteria is able to down-regulate inflammatory bowel disease in model mice, suggesting that stimulation with PSA results in regulatory T cell (Treg) generation. However, mechanisms of how peripheral human T cells respond and home in response to commensal antigens are still not understood. Here, we demonstrate that a single exposure to PSA induces differentiation of human peripheral CD4(+) T cells into type-Tr1 Tregs. This is in contrast to mouse models where PSA induced the production of Foxp3(+) iTregs. The human PSA-induced Tr1 cells are profoundly anergic and exhibit nonspecific bystander suppression mediated by IL-10 secretion. Most surprisingly, glycoantigen exposure provoked expression of gut homing receptors on their surface. These findings reveal a mechanism for immune homeostasis in the gut whereby exposure to commensal glycoantigens provides the requisite information to responding T cells for proper tissue localization (gut) and function (anti-inflammatory/regulatory).  相似文献   

10.
The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.  相似文献   

11.
The human gastrointestinal tract is exposed to a huge variety of microorganisms, either commensal or pathogenic; at this site, a balance between immunity and immune tolerance is required. Intestinal dendritic cells (DCs) control the mechanisms of immune response/tolerance in the gut. In this paper we have identified a peptide (STp) secreted by Lactobacillus plantarum, characterized by the abundance of serine and threonine residues within its sequence. STp is encoded in one of the main extracellular proteins produced by such species, which includes some probiotic strains, and lacks cleavage sites for the major intestinal proteases. When studied in vitro, STp expanded the ongoing production of regulatory IL-10 in human intestinal DCs from healthy controls. STp-primed DC induced an immunoregulatory cytokine profile and skin-homing profile on stimulated T-cells. Our data suggest that some of the molecular dialogue between intestinal bacteria and DCs may be mediated by immunomodulatory peptides, encoded in larger extracellular proteins, secreted by commensal bacteria. These peptides may be used for the development of nutraceutical products for patients with IBD. In addition, this kind of peptides seem to be absent in the gut of inflammatory bowel disease patients, suggesting a potential role as biomarker of gut homeostasis.  相似文献   

12.
The resident prokaryotic microflora of the mammalian intestine influences diverse homeostatic functions of the gut, including regulation of cellular growth and immune responses; however, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. We have shown that bacterial coculture with intestinal epithelial cells modulates ubiquitin-mediated degradation of important signaling intermediates, including beta-catenin and the NF-kappaB inhibitor IkappaB-alpha. Ubiquitination of these proteins as well as others is catalyzed by the SCF(betaTrCP) ubiquitin ligase, which itself requires regulated modification of the cullin-1 subunit by the ubiquitin-like protein NEDD8. Here we show that epithelia contacted by enteric commensal bacteria in vitro and in vivo rapidly generate reactive oxygen species (ROS). Bacterially induced ROS causes oxidative inactivation of the catalytic cysteine residue of Ubc12, the NEDD8-conjugating enzyme, resulting in complete but transient loss of cullin-1 neddylation and consequent effects on NF-kappaB and beta-catenin signaling. Our results demonstrate that commensal bacteria directly modulate a critical control point of the ubiquitin-proteasome system, and suggest how enteric commensal bacterial flora influences the regulatory pathways of the mammalian intestinal epithelia.  相似文献   

13.
The intestinal immune system has to discriminate between harmful and beneficial antigens. Although strong protective immunity is essential to prevent invasion by pathogens, equivalent responses against dietary proteins or commensal bacteria can lead to chronic disease. These responses are normally prevented by a complex interplay of regulatory mechanisms. This article reviews the unique aspects of the local microenvironment of the intestinal immune system and discuss how these promote the development of regulatory responses that ensure the maintenance of homeostasis in the gut.  相似文献   

14.
15.
The normal microbial occupants of the mammalian intestine are crucial for maintaining gut homeostasis, yet the mechanisms by which intestinal cells perceive and respond to the microbiota are largely unknown. Intestinal epithelial contact with commensal bacteria and/or their products has been shown to activate noninflammatory signaling pathways, such as extracellular signal-related kinase (ERK), thus influencing homeostatic processes. We previously demonstrated that commensal bacteria stimulate ERK pathway activity via interaction with formyl peptide receptors (FPRs). In the current study, we expand on these findings and show that commensal bacteria initiate ERK signaling through rapid FPR-dependent reactive oxygen species (ROS) generation and subsequent modulation of MAP kinase phosphatase redox status. ROS generation induced by the commensal bacteria Lactobacillus rhamnosus GG and the FPR peptide ligand, N-formyl-Met-Leu-Phe, was abolished in the presence of selective inhibitors for G protein-coupled signaling and FPR ligand interaction. In addition, pretreatment of cells with inhibitors of ROS generation attenuated commensal bacteria-induced ERK signaling, indicating that ROS generation is required for ERK pathway activation. Bacterial colonization also led to oxidative inactivation of the redox-sensitive and ERK-specific phosphatase, DUSP3/VHR, and consequent stimulation of ERK pathway signaling. Together, these data demonstrate that commensal bacteria and their products activate ROS signaling in an FPR-dependent manner and define a mechanism by which cellular ROS influences the ERK pathway through a redox-sensitive regulatory circuit.  相似文献   

16.
乳酸菌对肠免疫调节功能研究进展   总被引:1,自引:0,他引:1  
乳酸菌作为益生菌是人体肠道中的重要生理菌群,对维持肠道的微生态平衡,缓解过敏,抑制肠道炎症反应等免疫调节方面有重要作用。本文综述了乳酸菌对肠免疫系统的调节作用,主要从调节先天性免疫和获得性免疫系统角度出发,讨论相关研究进展,并对乳酸菌在免疫调节方面的应用前景作了展望。  相似文献   

17.
产气荚膜梭菌促进黑腹果蝇的生长和发育   总被引:1,自引:0,他引:1  
【目的】黑腹果蝇Drosophila melanogaster肠道中栖生着众多微生物,通过分离和研究其内共生菌,以研究肠道菌群的多态性和作用。【方法】利用Hungate滚管技术从黑腹果蝇成虫肠道分离厌氧细菌;通过记录果蝇的发育历期和生长速率,检测该细菌对果蝇发育和生长的影响。【结果】首次从黑腹果蝇肠道内分离到一株产气荚膜梭菌Clostridium perfringens。该菌能够有效地定植到果蝇肠道内,是果蝇肠道共生菌。产气荚膜梭菌显著地缩短无菌果蝇的发育历期,将无菌果蝇成蛹天数由20 d缩短到8.1 d,羽化天数由30 d缩短到12.7 d。该菌还可以提高果蝇生长速率。【结论】本研究揭示了产气荚膜梭菌是果蝇的内共生菌,可以通过提高生长速率而有效地促进果蝇的生长和发育。  相似文献   

18.
Probiotic bacteria elicit a number of beneficial effects in the gut but the mechanisms for these health promoting effects are not entirely understood. Recent in vitro data suggest that lactobacilli can utilise nitrate and nitrite to generate nitric oxide, a gas with immunomodulating and antibacterial properties. Here we further characterised intestinal NO generation by bacteria. In rats, dietary supplementation with lactobacilli and nitrate resulted in a 3-8 fold NO increase in the small intestine and caecum, but not in colon. Caecal NO levels correlated to nitrite concentration in luminal contents. In neonates, colonic NO levels correlated to the nitrite content of breast milk and faeces. Lactobacilli and bifidobacteria isolated from the stools of two neonates, generated NO from nitrite in vitro, whereas S. aureus and E. coli rapidly consumed NO. We here show that commensal bacteria can be a significant source of NO in the gut in addition to the mucosal NO production. Intestinal NO generation can be stimulated by dietary supplementation with substrate and lactobacilli. The generation of NO by some probiotic bacteria can be counteracted by rapid NO consumption by other strains. Future studies will clarify the biological role of the bacteria-derived intestinal NO in health and disease.  相似文献   

19.
Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d‐restricted microbial lipids and self‐lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid‐dependent immunity in the intestinal compartment and reveal an NKT cell–DC crosstalk as a key mechanism for the regulation of gut homeostasis.  相似文献   

20.
Gut microbes symbiotically colonize the gastrointestinal (GI) tract, interacting with each other and their host to maintain GI tract homeostasis. Recent reports have shown that gut microbes help protect the gut from colonization by pathogenic microbes. Here, we report that commensal microbes prevent colonization of the GI tract by the pathogenic fungus, Candida albicans. Wild‐type specific pathogen‐free (SPF) mice are resistant to C. albicans colonization of the GI tract. However, administering certain antibiotics to SPF mice enables C. albicans colonization. Quantitative kinetics of commensal bacteria are inversely correlated with the number of C. albicans in the gut. Here, we provide further evidence that transplantation of fecal microbiota is effective in preventing Candida colonization of the GI tract. These data demonstrate the importance of commensal bacteria as a barrier for the GI tract surface and highlight the potential clinical applications of commensal bacteria in preventing pathogenic fungal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号