首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.

Background

Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo.

Principal Findings

P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis.

Conclusions

In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed.  相似文献   

2.
目的:观察硫化氢(H2S)供体硫氢化钠(NaHS)对ATP致伤的大鼠小胶质细胞细胞活力、细胞膜通透性及P2X7受体表达的影响。方法:实验取对数期形态结构及生长分化良好的大鼠小胶质细胞,随机分4组,每组设3个复孔。①正常对照组:常规培养,不进行ATP处理。②ATP组:接种细胞24 h后ATP处理。③NaHS+ATP组:NaHS预先孵育30 min后再用ATP处理,并且NaHS始终存在于反应体系中。④KN-62(P2X7受体阻断剂)+ATP组:KN-62预先孵育30 min,其余同NaHS+ATP组。MTT检测各组细胞活力,荧光染料YO-PRO-1检测各组相对荧光单位(RFU)反映膜的通透性,Western blot检测各组P2X7受体表达水平。结果:①与对照组相比,不同浓度的ATP (1、3、5、10 mmol/L)作用3 h均可明显降低大鼠小胶质细胞活力,NaHS (200 μmol/L)干预后大鼠小胶质细胞活力较ATP组明显增加(P<0.01),但NaHS达400 μmol/L浓度时,其保护作用未进一步增加。②随着ATP浓度的增加,大鼠小胶质细胞内YO-PRO-1的荧光强度显著增加,NaHS预处理可明显减少细胞对YO-PRO-1的摄取(P<0.01)。③ATP (3 mmol/L)能上调P2X7受体蛋白表达水平,而NaHS (200 μmol/L)预孵育则可明显抑制ATP引起的P2X7受体蛋白表达的上调(P<0.01)。结论:NaHS可减少ATP致伤的大鼠小胶质细胞的P2X7受体表达、降低通透性、增加细胞活力,提示调控P2X7受体的表达和功能可能是H2S神经保护作用的重要环节。  相似文献   

3.
The present work reports that activation of P2X7 receptor induces synaptic vesicle release in granule neurons and phosphorylation of synapsin-I by calcium-calmodulin-dependent protein kinase II (CaMKII), which in turn modulates secretory event. ATP, in absence of magnesium, induced a concentration-dependent glutamate release with an EC50 value of 1.95 microM. The involvement of P2X7 receptor was suggested when maximal secretory response was significantly reduced by the selective P2X7 antagonist Brilliant Blue G (BBG; 100 nM) and abolished by removing extracellular Ca2+. The involvement of P2X7 receptor on synaptic vesicle release was confirmed by measuring the release of FM 1-43 dye. In this case, pharmacological activation of P2X7 was achieved with the more selective agonist 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 microM) showing a significant FM 1-43 release that was blocked by BBG (100 nM), by Zn2+ ions (100 microM), both P2X7 blockers, but not by suramin (100 microM), antagonist of P2X1, P2X2, P2X3 and P2X5. In addition, BzATP, through P2X7 receptor activation, significantly increased the phosphorylation of synapsin-I, the main presynaptic target of CaMKII. Both effects mediated by BzATP were inhibited by the CaMKII inhibitors KN-62 (10 microM) and KN-93 (10 microM). These results suggest, therefore, that Ca2+ entrance mediated by P2X7 receptor induces glutamate release and in parallel synapsin-I phosphorylation.  相似文献   

4.
Canine erythrocytes are known to undergo a reversible increase in cation permeability when incubated with extracellular ATP. We have examined the expression and function of P2X receptors on human erythrocytes using confocal microscopy and a panel of anti-P2X(1-7) antibodies and have measured monovalent cation fluxes in the presence of various nucleotide agonists. Human erythrocytes expressed P2X7 receptors on all cells examined from eight of eight subjects, as well as P2X2 at a far lower staining intensity in six of eight subjects. ATP stimulated the efflux of 86Rb+ (K+) from human erythrocytes in a dose-dependent fashion with an EC50 of approximately 95 microM. Other nucleotides also induced an efflux of 86Rb+ from erythrocytes with an order of agonist potency of 2'- and 3'-O(4-benzoylbenzoyl) ATP (BzATP) > ATP > 2-methylthio-ATP (2MeSATP) > adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), whereas ADP or UTP had no effect. ATP-induced efflux of 86Rb+ from erythrocytes was inhibited by extracellular Na+ and oxidized ATP, as well as by KN-62, an antagonist specific for the human P2X7 receptor. When erythrocytes were incubated in isotonic KCl medium, the addition of ATP stimulated an 86Rb+ influx approximately equal in magnitude to ATP-stimulated 86Rb+ efflux from the same cells. BzATP also stimulated the influx of 22Na+ into erythrocytes incubated in isotonic NaCl medium. Both ATP-induced efflux and influx of 86Rb+ and 22Na+ were impaired in erythrocytes from subjects who had inherited loss-of-function polymorphisms in the P2X7 receptor. These results suggest that the reversible permeabilization of erythrocytes by extracellular ATP is mediated by the P2X7 receptor.  相似文献   

5.
The P2X(7) receptor (P2X(7)R), an ATP-gated ion channel, has been implicated in the process of cell-to-cell fusion into multinucleated macrophages (MA), but its contribution to MA fusion driven by physiological/pathological stimuli is not clearly established. Based on several lines of evidence, we demonstrate that P2X(7)R is critical for the induction of multinucleated MA by the inflammatory cytokine GM-CSF: 1) pharmacological inhibition of P2X(7)R with oxidized ATP (oATP), KN-62, and the selective antagonist A740003 abrogated GM-CSF action on rat alveolar MA and murine peritoneal MA; 2) a murine J774 P2X(7) low MA clone, selected for defective P2X(7)R function, was unresponsive; 3) MA from mice lacking P2X(7)R failed to respond to GM-CSF, in contrast to wild-type. GM-CSF also stimulated ATP-induced membrane permeabilization in J774 P2X(7) high MA and rat alveolar MA, an effect absent in the P2X(7) low MA clone and inhibited by the P2X(7) blockers oATP and KN-62. Notably, the stimulatory effects of GM-CSF on pore formation and MA fusion were both inhibited by blocking functional Pannexin-1 (Panx-1), and GM-CSF failed to stimulate MA fusion in cells from Panx-1 knockout mice. We provide further evidence that extracellular ATP release from peritoneal MA is dependent on P2X(7) but not on Panx-1 expression and that its metabolism to adenosine mediates P2X(7)-dependent MA fusion. These data demonstrate that both P2X(7) and Panx-1 are required for GM-CSF promotion of MA fusion but likely act independently through different signaling pathway(s).  相似文献   

6.
Pannexin 1 (Panx1), an ortholog to invertebrate innexin gap junctions, has recently been proposed to be the pore induced by P2X(7) receptor (P2X(7)R) activation. We explored the pharmacological action of compounds known to block gap junctions on Panx1 channels activated by the P2X(7)R and the mechanisms involved in the interaction between these two proteins. Whole cell recordings revealed distinct P2X(7)R and Panx1 currents in response to agonists. Activation of Panx1 currents following P2X(7)R stimulation or by membrane depolarization was blocked by Panx1 small-interfering RNA (siRNA) and with mefloquine > carbenoxolone > flufenamic acid. Incubation of cells with KN-62, a P2X(7)R antagonist, prevented current activation by 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP). Membrane permeabilization to dye induced by BzATP was also prevented by Panx1 siRNA and by carbenoxolone and mefloquine. Membrane permeant (TAT-P2X(7)) peptides, provided evidence that the Src homology 3 death domain of the COOH-terminus of the P2X(7)R is involved in the initial steps of the signal transduction events leading to Panx1 activation and that a Src tyrosine kinase is likely involved in this process. Competition assays indicated that 20 muM TAT-P2X(7) peptide caused 50% reduction in Src binding to the P2X(7)R complex. Src tyrosine phosphorylation following BzATP stimulation was reduced by KN-62, TAT-P2X(7) peptide, and by the Src tyrosine inhibitor PP2 and these compounds prevented both large-conductance Panx1 currents and membrane permeabilization. These results together with the lack Panx1 tyrosine phosphorylation in response to P2X(7)R stimulation indicate the involvement of an additional molecule in the tyrosine kinase signal transduction pathway mediating Panx1 activation through the P2X(7)R.  相似文献   

7.
We investigated the expression of purinoceptors in human dendritic cells, providing functional, pharmacological, and biochemical evidence that immature and mature cells express P2Y and P2X subtypes, coupled to increase in the intracellular Ca(2+), membrane depolarization, and secretion of inflammatory cytokines. The ATP-activated Ca(2+) change was biphasic, with a fast release from intracellular stores and a delayed influx across the plasma membrane. A prolonged exposure to ATP was toxic to dendritic cells that swelled, lost typical dendrites, became phase lucent, detached from the substrate, and eventually died. These changes were highly suggestive of expression of the cytotoxic receptor P2X(7), as confirmed by ability of dendritic cells to become permeant to membrane impermeant dyes such as Lucifer yellow or ethidium bromide. The P2X(7) receptor ligand 2',3'-(4-benzoylbenzoyl)-ATP was a better agonist then ATP for Ca(2+) increase and plasma membrane depolarization. Oxidized ATP, a covalent blocker of P2X receptors, and the selective P2X(7) antagonist KN-62 inhibited both permeabilization and Ca(2+) changes induced by ATP. The following purinoceptors were expressed by immature and mature dendritic cells: P2Y(1), P2Y(2), P2Y(5), P2Y(11) and P2X(1), P2X(4), P2X(7). Finally, stimulation of LPS-matured cells with ATP triggered release of IL-1 beta and TNF-alpha. Purinoceptors may provide a new avenue to modulation of dendritic cells function.  相似文献   

8.
Endothelial cells control vascular tone, permeability and leukocyte transmigration and are modulated by pro-inflammatory mediators. Schistosomiasis is an intravascular disease associated with inflammation, therefore altering endothelial cells’ phenotype. Purinergic P2X7 receptors (P2X7R) play an important role in inflammation; however, the impact of the disease upon endothelial P2X7R function or expression has not been explored. Using ethidium bromide uptake to investigate P2X7R function, we observed that the effects of ATP (3 mM) and the P2X7R agonist 3′-O-(4-benzoyl)-ATP (BzATP) were smaller in mesenteric endothelial cells from the Schistosoma mansoni-infected group than in the control group. In the control group, BzATP induced endothelial nitric oxide production, which was blocked by the P2X7R antagonists KN-62 and A740003. However, in the infected group, we observed a reduced effect of BzATP and no effect of both P2X7R antagonists, suggesting a downregulation of endothelial P2X7R in schistosomiasis. We observed similar results in both infected and P2X7R−/− groups, which were also comparable to data obtained with KN-62- or A740004-treated control cells. Data from Western blot and immunocytochemistry assays confirmed the reduced expression of P2X7R in the infected group. In conclusion, our data show a downregulation of P2X7R in schistosomiasis infection, which likely limits the infection-related endothelial damage.  相似文献   

9.
Extracellular ATP, released at sites of inflammation or tissue damage, activates the P2X(7) receptor, which in turn triggers a range of responses also including cell proliferation. In this study the ability of the human cathelicidin LL-37 to stimulate fibroblast growth was inhibited by commonly used P2X(7) blockers. We investigated the structural requirements of the growth-promoting activity of LL-37 and found that it did not depend on helix sense (the all-d analog was active) but did require a strong helix-forming propensity in aqueous solution (a scrambled analog and primate LL-37 orthologs devoid of this property were inactive). The involvement of P2X(7) was analyzed using P2X(7)-expressing HEK293 cells. LL-37 induced proliferation of these cells, triggered Ca(2+) influx, promoted ethidium bromide uptake, and synergized with benzoyl ATP to enhance the pore and channel functions of P2X(7). The activity of LL-37 had an absolute requirement for P2X(7) expression as it was blocked by the P2X(7) inhibitor KN-62, was absent in cells lacking P2X(7), and was restored by P2X(7) transfection. Of particular interest, LL-37 led to pore-forming activity in cells expressing a truncated P2X(7) receptor unable to generate the non-selective pore typical of the full-length receptor. Our results indicate that P2X(7) is involved in the proliferative cell response to LL-37 and that the structural/aggregational properties of LL-37 determine its capacity to modulate the activation state of P2X(7).  相似文献   

10.
Establishment of an assay for P2X7 receptor-mediated cell death   总被引:1,自引:0,他引:1  
The P2X7 receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human P2X7 receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of hP2X7 receptor. Functional activity of the hP2X7 receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the hP2X7-expressing HEK 293 cells and this cell death could be quantified. Two known P2X7 antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of hP2X7 receptors.  相似文献   

11.
Non-apoptotic externalization of phosphatidylserine (PS) can act as a reactive surface for the efficient assembly of the prothrombinase complex leading to thrombin generation and coagulation. Here we show that extracellular ATP, acting at the macrophage P2X(7) receptor, drives the rapid Ca(2+)-dependent formation and release of PS-rich microvesicles that enhance the assembly of the prothrombinase complex and subsequent formation of thrombin. Incubation with P2X(7) receptor antagonists (KN-62 and Brilliant Blue G) attenuates ATP induced prothrombotic responses. Consistent with the hypothesis that exposed PS enhances prothrombinase activity; pre-incubation with annexin V blocks the increase in thrombin formation. The rapid translocation of PS and formation of pro-thrombotic microvesicles occurs in the absence of cell lysis. These data demonstrate that the pro-inflammatory P2X(7) receptor can also support and propagate rapid increases in thrombin formation.  相似文献   

12.
Nicotinamide phosphoribosyltransferase (NAMPT), an enzyme involved in NAD biosynthesis, has recently been identified as a novel mediator of innate immunity. In the present study, we report that treatment of LPS-primed monocytes with ATP greatly enhanced the secretion of NAMPT in a time- and concentration-dependent manner without displaying any cytotoxic effect. NAMPT release was suppressed by pretreatment with the P2X(7) receptor (P2X(7)R) inhibitors oxidized ATP (oxATP) and KN-62, indicating the engagement of P2X(7)Rs. Furthermore, P2X(7)R was found to be involved in mediating cell permeability caused by the addition of ATP. To define a role of endogenous ATP in NAMPT secretion, LPS-primed monocytes were incubated in the presence of oxATP and KN-62, as well as the ATP-hydrolyzing enzymes apyrase and hexokinase. With the exception of oxATP, neither substance led to a decrease in NAMPT release, suggesting that autocrine/paracrine ATP is unlikely to be responsible for the LPS-induced release of NAMPT. In conclusion, the enhanced release of NAMPT by extracellular ATP described here indicates the requirement of a second stimulus for the efficient secretion of NAMPT. This mode of secretion, which also applies to IL-1β, might represent a general mechanism for the release of leaderless secretory proteins at locally restricted sites.  相似文献   

13.
In human and rodent macrophages, activation of the P2X7 nucleotide receptor stimulates interleukin-1beta processing and release, apoptosis, and killing of intracellular Mycobacterium tuberculosis. Signaling pathways downstream of this ionotropic ATP receptor are poorly understood. Here we describe the rapid activation of the stress-activated protein kinase (SAPK)/JNK pathway in BAC1 murine macrophages stimulated by extracellular ATP. Brief exposure of the cells to ATP (10-30 min) was sufficient to trigger a rapid accumulation of activated SAPK that was then sustained for >120 min. Several observations indicated that the P2X7 receptor mediated this effect. 1) ATP and 3'-O-(4-benzoyl)benzoyl-ATP were the only agonistic nucleotides. 2) The effect was inhibited by oxidized ATP and the isoquinoline KN-62, two known P2X7 receptor antagonists. 3) ATP-induced SAPK activation could be recapitulated in P2X7 receptor-transfected HEK293 cells, but not in wild-type HEK293 cells. Because P2X7 receptor stimulation can rapidly activate caspase family proteases that have been implicated in the induction of the SAPK pathway, we investigated whether ATP-dependent SAPK activation involved such proteases. Brief exposure of BAC1 macrophages to extracellular ATP induced DNA fragmentation, alpha-fodrin breakdown, and elevated levels of caspase-3-type activity. Asp-Glu-Val-Asp-cho, a caspase-3 inhibitor, inhibited ATP-induced DNA fragmentation and alpha-fodrin proteolysis, but had no effect on ATP-induced SAPK activation. Tyr-Val-Ala-Asp-chloromethyl ketone, a caspase-1 inhibitor, prevented ATP-induced release of processed interleukin-1beta, but not ATP-dependent SAPK activity. We conclude that activation of ionotropic P2X7 nucleotide receptors triggers a strong activation of SAPK via a pathway independent of caspase-1- or caspase-3-like proteases.  相似文献   

14.
The P2X7 receptor is an extracellular ATP-gated cation channel critical in inflammation and immunity, and can be up-regulated by IFN-γ and LPS. This study aimed to examine the effect of TGF-β1 on the up-regulation of P2X7 function and expression in leukemic THP-1 monocytes differentiated with IFN-γ and LPS. Cell-surface molecules including P2X7 were examined by immunofluorescence staining. Total P2X7 protein and mRNA was assessed by immunoblotting and RT-PCR respectively. P2X7 function was evaluated by ATP-induced cation dye uptake measurements. Cell-surface P2X7 was present on THP-1 cells differentiated for 3 days with IFN-γ and LPS but not on undifferentiated THP-1 cells. ATP induced ethidium+ uptake into differentiated but not undifferentiated THP-1 cells, and the P2X7 antagonist, KN-62, impaired ATP-induced ethidium+ uptake. Co-incubation of cells with TGF-β1 plus IFN-γ and LPS prevented the up-regulation of P2X7 expression and ATP-induced ethidium+ uptake in a concentration-dependent fashion with a maximum effect at 5 ng/ml and with an IC50 of ~ 0.4 ng/ml. Moreover, ATP-induced YO-PRO-12+ uptake and IL-1β release were abrogated in cells co-incubated with TGF-β1. TGF-β1 also abrogated the amount of total P2X7 protein and mRNA induced by IFN-γ and LPS. Finally, TGF-β1 prevented the up-regulation of cell-surface CD86, but not CD14 and MHC class II, by IFN-γ and LPS. These results indicate that TGF-β1 prevents the up-regulation of P2X7 function and expression by IFN-γ and LPS in THP-1 monocytes. This suggests that TGF-β1 may limit P2X7-mediated processes in inflammation and immunity.  相似文献   

15.
In response to ATP binding, the P2X7R facilitates cation channel activation, nonspecific pore formation, rapid changes in plasma membrane morphology, and secretion of IL-1 beta from LPS-primed macrophages. To investigate the relationship between the P2X7R-dependent changes in plasma membrane organization and the release of IL-1 beta, we generated time-lapse movies of ATP-stimulated BAC1 murine macrophages in conjunction with biochemical analyses of IL-1 beta release. Similar image analyses in human embryonic kidney 293 cells expressing recombinant P2X7R (HEK-P2X7) permitted comparison of P2X7R-dependent effects in macrophage vs nonmacrophage backgrounds. Whereas HEK-P2X7 cells exhibit zeiotic blebbing within 5 min of ATP treatment, BAC1 macrophages initiated a distinct "tethered" blebbing 10 min after ATP addition. This blebbing was comparably induced by the P2X7R-selective agonist BzATP and was blocked by P2X7R inhibitors KN-62 and oxidized ATP. Blebbing was initiated at ATP concentrations > or = 3 mM, but optimal IL-1 beta release occurred at 1 mM ATP. P2X7R-dependent blebbing was abrogated in the presence of Rho-effector kinase inhibitors Fasudil and Y-27632, but ATP-induced IL-1 beta release was unaffected. ATP-induced activation of RhoA could be detected in both HEK-P2X7 cells and BAC1 murine macrophages. Thus, P2X7R activation signals distinct, novel membrane blebbing events (dependent on RhoA activation and Rho-effector kinase activity) and simultaneously initiates release of IL-1 beta. Our observations that blebbing and IL-1 beta release are dissociable suggest these events occur via parallel rather than convergent signaling pathways.  相似文献   

16.
The effect of extracellular ATP on salivary gland function was compared in wild-type (WT) and P2X(7) knockout (KO) mice. The increase in the intracellular concentration of calcium ([Ca(2+)](i)) in response to carbachol was similar in submandibular ductal cells of WT and KO mice. ATP and its analog, benzoyl-ATP, induced a sustained increase in the [Ca(2+)](i) in WT animals. In KO mice, ATP slightly and transiently increased the [Ca(2+)](i) and benzoyl-ATP had no effect. The response to ATP of WT but not KO mice was blocked by KN-62, Coomassie blue and magnesium. The small response of ATP observed in KO mice was completely blocked in the absence of extracellular calcium, unchanged by U73122 and potentiated by ivermectin indicating the probable involvement of a P2X(4) receptor. A RT-PCR and a Western blot confirmed the presence of these receptors in ducts of both WT and KO mice. ATP increased the permeability of the cells to ethidium bromide and stimulated a phospholipase A(2) activity in WT but not KO mice. Mice submandibular gland cells secreted IL-1beta but this secretion was not modified by ATP and was similar in both groups of animals. The volume of saliva provoked by pilocarpine and the concentration of proteins, sodium and chloride in this saliva was similar in both groups of animals. The concentration of potassium was higher in KO mice. We can conclude that the major purinergic receptors expressed in mice submandibular ductal cells are P2X(7) receptors but that P2X(4) receptors are also involved in some ATP effects.  相似文献   

17.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

18.
P2X receptors for ATP are a family of ligand-gated cation channels. There are 11 conserved positive charges in the extracellular loop of P2X receptors. We have generated point mutants of these conserved residues (either Lys --> Arg, Lys --> Ala, Arg --> Lys, or Arg --> Ala) in the human P2X(1) receptor to determine their contribution to the binding of negatively charged ATP. ATP evoked concentration-dependent (EC(50) approximately 0.8 microm) desensitizing responses at wild-type (WT) P2X(1) receptors expressed in Xenopus oocytes. Suramin produced a parallel rightward shift in the concentration response curve with an estimated pK(B) of 6.7. Substitution of amino acids at positions Lys-53, Lys-190, Lys-215, Lys-325, Arg-202, Arg-305, and Arg-314 either had no effect or only a small change in ATP potency, time course, and/or suramin sensitivity. Modest changes in ATP potency were observed for mutants at K70R and R292K/A (20- and 100-fold decrease, respectively). Mutations at residues K68A and K309A reduced the potency of ATP by >1400-fold and prolonged the time course of the P2X(1) receptor current but had no effect on suramin antagonism. Lys-68, Lys-70, Arg-292, and Lys-309 are close to the predicted transmembrane domains of the receptor and suggest that the ATP binding pocket may form close to the channel vestibule.  相似文献   

19.
Contact of T lymphocytes with nicotinamide adenine dinucleotide (NAD) or ATP causes cell death that requires expression of purinergic receptor P2X(7) (P2X(7)R). T cell subsets differ in their responses to NAD and ATP, which awaits a mechanistic explanation. Here, we show that sensitivity to ATP correlates with P2X(7)R expression levels in CD4 cells, CD8 cells and CD4(+)CD25(+) cells from both C57BL/6 and BALB/c mice. But P2X(7)R ligands do not only induce cell death but also shedding of CD62L. It is shown here that in CD62L(high) T cells, CD62L shedding correlates with low expression of P2X(7)Rs and lower cell death, whereas in CD62L(low) cells P2X(7)R expression and death are higher. The possibility is therefore investigated that P2X(7)Rs induce T cell activation. Experiments show that spontaneous T cell proliferation is somewhat higher in cells expressing P2X(7)Rs, but this effect we suggest is caused by P2X(7)R expression on accessory cells.  相似文献   

20.
The antibiotic polymyxin B modulates P2X7 receptor function   总被引:3,自引:0,他引:3  
The natural peptide polymyxin B (PMB) is a well-known and potent antibiotic that binds and neutralizes bacterial endotoxin (LPS), thus preventing its noxious effects among LPS-mediated endotoxin shock in animal models. We have investigated the effect of PMB on responses mediated by the P2X(7)R in HEK293 and K562 cells transfected with P2X(7) cDNA and in mouse and human macrophages. In addition, in view of the potential exploitation of P2X(7)-directed agonists in antitumor therapy, we also investigated the effect of PMB in B lymphocytes from patients affected by chronic lymphocytic leukemia. PMB, at an optimal concentration dependent on the given cell type, greatly potentiated the effect of nucleotide-mediated P2X(7) stimulation. In particular, ATP-mediated Ca(2+) influx, plasma membrane permeabilization, and cytotoxicity were enhanced to an extent that, in the presence of PMB, cells were killed by otherwise ineffective nucleotide concentrations. The synergistic effect due to the combined application of ATP and PMB was prevented by incubation with the irreversible P2X blocker oxidized ATP (oATP), but not with the reversible antagonist 1-(N,O-bis(1,5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl)-4-phenilpiperazine (KN-62). Cells lacking P2X(7) were fully insensitive to the combined stimulation with PMB and ATP. Furthermore, PMB at the concentrations used had no untoward effects on cell viability. These results point to PMB as a useful tool for the modulation of P2X(7)R function and suggest that care should be used in the evaluation of ATP-stimulated immune cell responses in the presence of PMB as they may not solely be affected by removal of contaminating LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号