首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002-27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxidase. Here we show that GPX2 encodes an atypical 2-Cys peroxiredoxin which uses thioredoxin as an electron donor. Gpx2 was essentially in a reduced form even in mutants defective in glutathione reductase or glutaredoxin under oxidative stressed conditions. On the other hand, Gpx2 was partially oxidized in a mutant defective in cytosolic thioredoxin (trx1Deltatrx2Delta) under non-stressed conditions and completely oxidized in tert-butyl hydroperoxide-treated cells of trx1Deltatrx2Delta and thioredoxin reductase-deficient mutant cells. Alanine scanning of cysteine residues of Gpx2 revealed that an intramolecular disulfide bond was formed between Cys37 and Cys83 in vivo. Gpx2 was purified to determine whether it functions as a peroxidase that uses thioredoxin as an electron donor in vitro. Gpx2 reduced H2O2 and tert-butyl hydroperoxide in the presence of thioredoxin, thioredoxin reductase, and NADPH (for H2O2, Km= 20 microm, kcat = 9.57 x 10(2) s(-1); for tert-butyl hydroperoxide, Km= 62.5 microm, kcat = 3.68 x 10(2) s(-1)); however, it showed remarkably less activity toward these peroxides in the presence of glutathione, glutathione reductase, and NADPH. The sensitivity of yeast cells to tert-butyl hydroperoxide was found to be exacerbated by the co-existence of Ca2+, a tendency that was most obvious in gpx2Delta cells. Although the redox state of Gpx2 was not affected by Ca2+, the Gpx2 level was markedly increased in the presence of both tert-butyl hydroperoxide and Ca2+. Gpx2 is likely to play an important role in the protection of cells from oxidative stress in the presence of Ca2+.  相似文献   

2.
The parasitic helminth Fasciola hepatica secretes a 2-Cys peroxiredoxin (Prx) that may play important functions in host-parasite interaction. Recombinant peroxiredoxin (FhePrx) prevented metal-catalyzed oxidative nicking of plasmid DNA and detoxified hydrogen peroxide when coupled with Escherichia coli thioredoxin and thioredoxin reductase (k(cat)/K(m)=5.2 x 10(5)M(-1)s(-1)). Enzyme kinetic analysis revealed that the catalytic efficiency of FhePrx is similar to other 2-Cys peroxiredoxins; the enzyme displayed saturable enzyme Michaelis-Menten type kinetics with hydrogen peroxide, cumene hydroperoxide and t-butyl hydroperoxide, and is sensitive to concentrations of hydrogen peroxide above 0.5 mM. Like the 2-Cys peroxiredoxins from a related helminth, Schistosoma mansoni, steady-state kinetics indicate that FhePrx exhibits a saturable, single displacement-like reaction mechanism rather than non-saturable double displacement (ping-pong) enzyme substitution mechanism common to other peroxiredoxins. However, unlike the schistosome Prxs, FhePrx could not utilise reducing equivalents supplied by glutathione or glutathione reductase.  相似文献   

3.
Patterns of expression of the 2-Cys and 1-Cys peroxiredoxin (Prx) proteins of the rodent malaria parasite Plasmodium yoelii during its life cycle were observed by immunofluorescent antibody staining and confocal laser scanning microscopy. 2-Cys Prx was expressed in the parasite cytoplasm throughout the life cycle, and the thioredoxin (Trx)-peroxidase activity of 2-Cys Prx revealed with the recombinant protein suggested that the Prx is constitutively expressed and, thus, likely plays a housekeeping role in the parasite's intracellular redox control. In contrast, 1-Cys Prx showed stage-specific expression in blood-stage parasites. The limited expression of 1-Cys Prx in the trophozoite cytoplasm suggests that 1-Cys Prx may be involved in haemoglobin metabolism by the parasite, which generates a prooxidative haem iron and increases intracellular oxidative stress. The antioxidant activity of 1-Cys Prx was tested for its ability to protect yeast enolase against inactivation of the mixed-function oxidation system. Differential expression of the two Prx proteins during the erythrocytic and insect stages suggests the importance of these proteins in protecting parasites against oxidative stress, which is generated by the parasite's metabolism and also from the environment.  相似文献   

4.
In Kinetoplastida 2-Cys peroxiredoxins are the ultimate members of unique enzymatic cascades for detoxification of peroxides, which are dependent on trypanothione, a small thiol specific to these organisms. Here we report on two distinct Leishmania infantum peroxiredoxins, LicTXNPx and LimTXNPx, that may be involved in such a pathway. LicTXNPx, found in the cytoplasm, is a typical 2-Cys peroxiredoxin encoded by LicTXNPx, a member of a multicopy gene family. LimTXNPx, encoded by a single copy gene, LimTXNPx, is confined to the mitochondrion and is unusual in possessing an Ile-Pro-Cys motif in the distal redox center, replacing the common peroxiredoxin Val-Cys-Pro sequence, apart from an N-terminal mitochondrial leader sequence. Based on sequence and subcellular localization, the peroxiredoxins of Kinetoplastida can be separated in two distinct subfamilies. As an approach to investigate the function of both peroxiredoxins in the cell, L. infantum promastigotes overexpressing LicTXNPx and LimTXNPx were assayed for their resistance to H(2)O(2) and tert-butyl hydroperoxide. The results show evidence that both enzymes are active as peroxidases in vivo and that they have complementary roles in parasite protection against oxidative stress.  相似文献   

5.
6.
The components of the redox metabolism in Entamoeba histolytica have been recently revisited by Arias et al. (Free Radic. Biol. Med. 42:1496-1505; 2007), after the identification and characterization of a thioredoxin-linked system. The present work deals with studies performed for a better understanding of the localization and identification of different components of the redox machinery present in the parasite. The gene encoding for amoebic thioredoxin 8 was cloned and the recombinant protein typified as having properties similar to those of thioredoxin 41. The ability of these thioredoxins and the specific reductase to assemble a system utilizing NADPH to metabolize hydroperoxides in association with a peroxiredoxin has been kinetically characterized. The peroxiredoxin behaved as a typical 2 cysteine enzyme, exhibiting a ping-pong mechanism with hyperbolic saturation kinetics for thioredoxin 8 (K(m)=3.8 microM), thioredoxin 41 (K(m)=3.1 microM), and tert-butyl hydroperoxide (K(m) about 35 microM). Moreover, the tandem system involving thioredoxin reductase and either thioredoxin proved to be operative for reducing low molecular weight disulfides, including putative physiological substrates as cystine and oxidized trypanothione. Thioredoxin reductase and thioredoxin 41 (by association also the functional redox system) have been immunolocalized underlying the plasma membrane in Entamoeba histolytica cells. These findings suggest an important role for the metabolic pathway involving thioredoxin as a redox interchanger, which could be critical for the maintenance and virulence of the parasite when exposed to highly toxic reactive oxygen species.  相似文献   

7.
The proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism. Grx2 reduces Prx3 exhibiting catalytic constants (K(m), 23.8 μmol·liter(-1); V(max), 1.2 μmol·(mg·min)(-1)) similar to Trx2 (K(m), 11.2 μmol·liter(-1); V(max), 1.1 μmol·(mg·min)(-1)). The reduction of the catalytic disulfide of the atypical 2-Cys Prx5 is limited to the Trx system. Silencing the expression of either Trx2 or Grx2 in HeLa cells using specific siRNAs did not change the monomer:dimer ratio of Prx3 detected by a specific 2-Cys Prx redox blot. Only combined silencing of the expression of both proteins led to an accumulation of oxidized protein. We further demonstrate that the distribution of Prx3 in different mouse tissues is either linked to the distribution of Trx2 or Grx2. These results introduce Grx2 as a novel electron donor for Prx3, providing further insights into pivotal cellular redox signaling mechanisms.  相似文献   

8.
An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H2O2. These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.  相似文献   

9.
10.
In Kinetoplastida, comprising the medically important parasites Trypanosoma brucei, T. cruzi, and Leishmania species, 2-Cys peroxiredoxins described to date have been shown to catalyze reduction of peroxides by the specific thiol trypanothione using tryparedoxin, a thioredoxin-related protein, as an immediate electron donor. Here we show that a mitochondrial peroxiredoxin from L. infantum (LimTXNPx) is also a tryparedoxin peroxidase. In an heterologous system constituted by nicotinamide adenine dinucleotide phosphate (NADPH), T. cruzi trypanothione reductase, trypanothione and Crithidia fasciculata tryparedoxin (CfTXN1 and CfTXN2), the recombinant enzyme purified from Escherichia coli as an N-terminally His-tagged protein preferentially reduces H(2)O(2) and tert-butyl hydroperoxide and less actively cumene hydroperoxide. Linoleic acid hydroperoxide and phosphatidyl choline hydroperoxide are poor substrates in the sense that they are reduced weakly and inhibit the enzyme in a concentration- and time-dependent way. Kinetic parameters deduced for LimTXNPx are a k(cat) of 37.0 s(-1) and K(m) values of 31.9 and 9.1 microM for CfTXN2 and tert-butyl hydroperoxide, respectively. Kinetic analysis indicates that LimTXNPx does not follow the classic ping-pong mechanism described for other TXNPx (Phi(1,2) = 0.8 s x microM(2)). Although the molecular mechanism underlying this finding is unknown, we propose that cooperativity between the redox centers of subunits may explain the unusual kinetic behavior observed. This hypothesis is corroborated by high-resolution electron microscopy and gel chromatography that reveal the native enzyme to preferentially exist as a homodecameric ring structure composed of five dimers.  相似文献   

11.
Drug resistance and virulence of Mycobacterium tuberculosis are in part related to the pathogen's antioxidant defense systems. KatG(-) strains are resistant to the first line tuberculostatic isoniazid but need to compensate their catalase deficiency by alternative peroxidase systems to stay virulent. So far, only NADH-driven and AhpD-mediated hydroperoxide reduction by AhpC has been implicated as such virulence-determining mechanism. We here report on two novel pathways which underscore the importance of the thioredoxin system for antioxidant defense in M. tuberculosis: (i) NADPH-driven hydroperoxide reduction by AhpC that is mediated by thioredoxin reductase and thioredoxin C and (ii) hydroperoxide reduction by the atypical peroxiredoxin TPx that equally depends on thioredoxin reductase but can use both, thioredoxin B and C. Kinetic analyses with different hydroperoxides including peroxynitrite qualify the redox cascade comprising thioredoxin reductase, thioredoxin C, and TPx as the most efficient system to protect M. tuberculosis against oxidative and nitrosative stress in situ.  相似文献   

12.
玉米过氧化物还原蛋白BAS1的原核表达及其功能研究   总被引:1,自引:0,他引:1  
植物过氧化物还原蛋白BAS1是巯基依赖的过氧化物酶,通过催化的Cys残基还原过氧化氢,依赖NADPH的叶绿体硫氧还蛋白还原酶保持BAS1的还原态。玉米含有两种BAS1:2-Cys PrxA和2-Cys PrxB。利用RT-PCR方法从玉米幼叶中克隆了编码成熟2-Cys PrxA的基因,并将蛋白Cys34残基突变成Ser34。SDS-PAGE显示纯化的野生型和突变体蛋白为一条主带,分子量约为23kDa;体外蛋白结合实验表明纯化的叶绿体硫氧还蛋白还原酶通过分子间二硫键结合纯化的2Cys PrxA的C34S突变体,非还原SDS-PAGE显示纯化的野生型2Cys PrxA含有分子间二硫键组成的二体,而纯化的C34S突变体呈现单体,巯基专一性标记化合物AMS修饰及活性分析表明纯化的BAS1还原态是催化还原过氧化氢所所必须的,它由硫氧还蛋白还原酶及其辅酶NADPH所催化。  相似文献   

13.
The flavoprotein component (AhpF) of Salmonella typhimurium alkyl hydroperoxide reductase contains an N-terminal domain (NTD) with two contiguous thioredoxin folds but only one redox-active disulfide (within the sequence -Cys129-His-Asn-Cys132-). This active site is responsible for mediating the transfer of electrons from the thioredoxin reductase-like segment of AhpF to AhpC, the peroxiredoxin component of the two-protein peroxidase system. The previously reported crystal structure of AhpF possessed a reduced NTD active site, although fully oxidized protein was used for crystallization. To further investigate this active site, we crystallized an isolated recombinant NTD (rNTD); using diffraction data sets collected first at our in-house X-ray source and subsequently at a synchrotron, we showed that the active site disulfide bond (Cys129-Cys132) is oxidized in the native crystals but becomes reduced during synchrotron data collection. The NTD disulfide bond is apparently particularly sensitive to radiation cleavage compared with other protein disulfides. The two data sets provide the first view of an oxidized (disulfide) form of NTD and show that the changes in conformation upon reduction of the disulfide are localized and small. Furthermore, we report the apparent pKa of the active site thiol to be approximately 5.1, a relatively low pKa given its redox potential (approximately 265 mV) compared with most members of the thioredoxin family.  相似文献   

14.
One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.  相似文献   

15.
16.
Broin M  Cuiné S  Eymery F  Rey P 《The Plant cell》2002,14(6):1417-1432
The chloroplastic drought-induced stress protein of 32 kD (CDSP32) is composed of two thioredoxin modules and is induced by environmental and oxidative stress conditions. We investigated whether the plastidic protein BAS1, which is related to eubacterial 2-Cys peroxiredoxin, is a target for CDSP32. Using a CDSP32 active-site mutant, we showed that the BAS1 and CDSP32 proteins form a mixed disulfide complex in vitro. Moreover, affinity chromatography indicated that BAS1 is a major target for CDSP32 in chloroplasts. CDSP32 was able to reduce BAS1 in vitro, and BAS1 displayed CDSP32-dependent peroxidase activity. The function of CDSP32 was investigated in transgenic potato lines without detectable levels of the protein as a result of cosuppression. Under conditions of photooxidative stress induced by incubation with either methyl viologen or t-butyl hydroperoxide or by exposure to low temperature under high light, plants lacking CDSP32 exhibited decreased maximal photosystem II photochemical efficiencies compared with the wild type and transgenic controls. In addition, plants without CDSP32 retained much less chlorophyll than controls under stress, indicating increased damage to photosynthetic membranes. We conclude that CDSP32 is a thioredoxin with a critical role in plastid defense against oxidative damage and that this role is related to its function as a physiological electron donor to the BAS1 peroxiredoxin.  相似文献   

17.
H(2)O(2) is a reactive oxygen species that has drawn much interest because of its role as a second messenger in receptor-mediated signaling. Mammalian 2-Cys peroxiredoxins have been shown to eliminate efficiently the H(2)O(2) generated in response to receptor stimulation. 2-Cys peroxiredoxins are members of a novel peroxidase family that catalyze the H(2)O(2) reduction reaction in the presence of thioredoxin, thioredoxin reductase and NADPH. Several lines of evidence suggest that 2-Cys peroxiredoxins have dual roles as regulators of the H(2)O(2) signal and as defenders of oxidative stress. In particular, 2-Cys peroxiredoxin appears to provide selective, specific and localized control of receptor-mediated signal transduction. Thus, the therapeutic potential of 2-Cys peroxiredoxins is clear for diseases, such as cancer and cardiovascular diseases, that involve reactive oxygen species.  相似文献   

18.
Peroxiredoxins are a large family of peroxidases that have important antioxidant and cell signaling functions. Genes encoding two novel 2-cysteine peroxiredoxin proteins were identified in the expressed sequence tag data base of the helminth parasite Schistosoma mansoni, a causative agent of schistosomiasis. The recombinant proteins showed peroxidase activity in vitro with a variety of hydroperoxides and used both the thioredoxin and the glutathione systems as electron donors. Steady-state kinetic analysis indicated that the new peroxiredoxins had saturable kinetics, whereas a previously identified schistosome peroxiredoxin was found to function with more typical unsaturable (ping-pong) kinetics. The catalytic efficiencies S. mansoni peroxiredoxins were similar to those for other peroxiredoxins studied (10(4)-10(5) m(-1) s(-1)). Mutagenesis of S. mansoni peroxiredoxins indicated that glutathione dependence and kinetic differences were conferred by the C-terminal alpha-helix forming 22 amino acids. This is the first report of 2-cysteine peroxiredoxins efficiently utilizing reducing equivalents from both the thioredoxin and glutathione systems. Studies to determine the resistance to oxidative inactivation, important in regulating cell signaling pathways, showed that S. mansoni possess both bacterial-like resistant and mammalian-like sensitive peroxiredoxins. The susceptibility to oxidative inactivation was conferred by the C-terminal tail containing a tyrosine-phenylalanine motif. S. mansoni is the first organism shown to possess both robust and sensitive peroxiredoxins. The ability of schistosome peroxiredoxins to use alternative electron donors, and their variable resistance to overoxidation may reflect their presence in different cellular sites and emphasizes the significant differences in overall redox balance mechanisms between the parasite and its mammalian host.  相似文献   

19.
Gpx2, one of three glutathione peroxidase homologs (Gpx1, Gpx2, and Gpx3) in Saccharomyces cerevisiae, is an atypical 2-Cys peroxiredoxin that prefers to use thioredoxin as a reducing agent in vitro. Despite Gpx2 being an antioxidant, no obvious phenotype of gpx2Δ mutant cells in terms of oxidative stress has yet been found. To gain a clue as to Gpx2’s physiological function in vivo, here we identify its intracellular distribution. Gpx2 was found to exist in the cytoplasm and mitochondria. In mitochondria, Gpx2 was associated with the outer membrane of the cytoplasmic-side, as well as the inner membrane of the matrix-side. The redox state of the mitochondrial Gpx2 was regulated by Trx1 and Trx2 (cytoplasmic thioredoxin), and by Trx3 (mitochondrial matrix thioredoxin). In addition, we found that the disruption of GPX2 reduced the sporulation efficiency of diploid cells.  相似文献   

20.
Barley 2-cysteine peroxiredoxin (2-Cys Prx) was analyzed for peroxide reduction, quaternary structure, thylakoid attachment, and function as well as in vivo occurrence of the inactivated form, with emphasis on the role of specific amino acid residues. Data presented show the following. 1) 2-Cys Prx has a broad substrate specificity and reduces even complex lipid peroxides such as phosphatidylcholine dilineoyl hydroperoxide, although at low rates. 2) 2-Cys Prx partly becomes irreversibly oxidized by peroxide substrates during the catalytic cycle in a concentration-dependent manner, particularly by bulky hydroperoxides. 3) Using dithiothreitol and thioredoxin (Trx) as reductants, amino acids were identified that are important for peroxide reduction (Cys64, Arg140, and Arg163), regeneration by Trx (Cys185), and conformation changes from dimer to oligomer (Thr66, Trp99, and Trp189). 4) Oligomerization decreased the rate of Trx-dependent peroxide detoxification. 5) Comparison of PrxWT, W99L, and W189L using static and time-resolved LIF techniques demonstrated the contributions of the tryptophan residues and yielded information about their local environment. Data indicated protein dynamics in the catalytic site and the carboxyl terminus during the reduction-oxidation cycle. 6) Reduced and inactivated barley 2-Cys Prx oligomerized and attached to the thylakoid membrane in isolated chloroplasts. The in vivo relevance of inactivation was shown in leaves subjected to cold and wilting stress and during senescence. Based on these results, it is hypothesized that in addition to its function in peroxide detoxification, 2-Cys Prx may play a role as a structural redox sensor in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号