首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the family of genes encoding for olfactory receptors was identified more than 15 years ago, the difficulty of functionally expressing these receptors in an heterologous system has, with only some exceptions, rendered the receptive range of given olfactory receptors largely unknown. Furthermore, even when successfully expressed, the task of probing such a receptor with thousands of odors/ligands remains daunting. Here we provide proof of concept for a solution to this problem. Using computational methods, we tune an electronic nose to the receptive range of an olfactory receptor. We then use this electronic nose to predict the receptors' response to other odorants. Our method can be used to identify the receptive range of olfactory receptors, and can also be applied to other questions involving receptor–ligand interactions in non-olfactory settings.  相似文献   

2.
Anion permeability of chloroplasts   总被引:3,自引:0,他引:3  
  相似文献   

3.
4.
Summary Freeze-fracture electronmicroscopy has been used to examine the membrane ultrastructure of human red blood cells in the presence of inhibitors of chloride exchange. The extent of inhibition was correlated with a decrease of intramembrane particle density on the B-fracture face. Dimethylsulfoxide (DMSO) and glycerol, which markedly and reversibly reduced the intramembrane particle density, were shown to drastically and reversibly inhibit chloride self-exchange. DMSO was shown to be a noncompetitive inhibitor of chloride flux.  相似文献   

5.
Summary Substitution of extracellular Na+ by Li+ causes depression of junctional membrane permeability inChironomus salivary gland cells; within 3 hr, permeability falls to so low a level that neither fluorescein nor the smaller inorganic ions any longer traverse the junctional membrane in detectable amounts (uncoupling). The effect is Li-specific: if choline+ is the Na+ substitute, coupling is unchanged. The Li-produced uncoupling is not reversed by restitution of Na+. Long-term exposure (>1 hr) of the cells to Ca, Mg-free medium leads also to uncoupling. This uncoupling is fully reversible by early restitution of Ca++ or Mg++. Coupling is maintained in the presence of either Ca++ or Mg++, so long as the total divalent concentration is about 12mm. The uncoupling in Ca, Mg-free medium ensues regardless of whether the main monovalent cation is Na, Li or choline.The uncouplings are accompanied by cell depolarization. Repolarization of the cells by inward current causes restoration of coupling; the junctional conductance rises again to its normal level. The effect was shown for Li-produced uncoupling, for uncoupling by prolonged absence of external Ca++ and Mg++, and for uncoupling produced by dinitrophenol. In all cases, the recoupling has the same features: (1) it develops rapidly upon application of the polarizing current; (2) it is cumulative; (3) it is transient, but outlasts the current; and (4) it appears not to depend on the particular ions carrying the current from the electrodes to the cell. The recoupling is due to repolarization of nonjunctional cell membrane; recoupling can be produced at zero net currernt through the junctional membrane. Recoupling takes place also as a result of chemically produced repolarization; restoration of theK gradients in uncoupled cells causes partial recoupling during the repolarization phase.An explanation of the results on coupling is proposed in terms of known mechanisms of regulation of Ca++ flux in cells. The uncouplings are explained by actions raising the Ca++ level in the cytoplasmic environment of the junctional membranes; the recoupling is explained by actions lowering this Ca++ level.  相似文献   

6.
Freeze-fracture electronmicroscopy has been used to examine the membrane ultrastructure of human red blood cells in the presence of inhibitors of chloride exchange. The extent of inhibition was correlated with a decrease of intramembrane particle density on the B-fracture face. Dimethylsulfoxide (DMSO) and glycerol, which markedly and reversibly reduced the intramembrane particle density, were shown to drastically and reversibly inhibit chloride self-exchange. DMSO was shown to be a noncompetitive inhibitor of chloride flux.  相似文献   

7.
Ionic fluxes in sea urchin sperm plasma membrane regulate cell motility and the acrosome reaction (AR). Although cationic channels mediate some of the ionic movements, little is known about anion channels in these cells. The fusion of sperm plasma membranes into lipid bilayers allowed identification of a 150 pS anion channel. This anion channel was enriched from detergent-solubilized sperm plasma membranes using a wheat germ agglutinin Sepharose column. Vesicles formed from this preparation were fused into black lipid membranes (BLM), yielding single channel anion-selective activity with the properties of those found in the sperm membranes. The following anion selectivity sequence was found: NO3? > CNS? > Br? > CI?. This anion channel has a high open probability at the holding potentials tested, it is partially blocked by 4,4′-diisothiocyano-2,2′ -stilbendisulfonic acid (DIDS), and it often displays substates. The sperm AR was also inhibited by DIDS. © 1993 Wiley-Liss, Inc.  相似文献   

8.
R R Anholt 《Biochemistry》1988,27(17):6464-6468
Chemosensory cilia isolated from the olfactory epithelium of Rana catesbeiana were solubilized with Lubrol PX in the presence of supplementary lipid, forskolin, and sodium fluoride. Subsequent removal of the detergent by adsorption onto Biobeads SM2 results in the formation of proteoliposomes that display forskolin- and GTP gamma S-sensitive adenylate cyclase activity. Sucrose gradient centrifugation of liposomes formed in the presence of fluorescently labeled phosphatidylcholine demonstrates association between the olfactory adenylate cyclase and the exogenously added lipid. Forskolin stimulates the enzyme in reconstituted membranes with the same potency as in native membranes (EC50 = 1-2 microM). However, GTP gamma S is 350-fold more potent in native membranes (EC50 = 4.0 +/- 0.5 nM) than in reconstituted membranes (EC50 = 1.4 +/- 0.3 microM). These studies represent a first step toward the functional reconstitution and molecular dissection of the olfactory membrane.  相似文献   

9.
The ionic permeability of the outer mitochondrial membrane (OMM) was studied with the patch clamp technique. Electrical recording of intact mitochondria (hence of the outer membrane (OM)), derived from mouse liver, showed the presence of currents corresponding to low conductances (< 50 pS), as well as of four distinct conductances of 99 pS,152 pS, 220 pS and 307 pS (in 150 mM KCl). The latter were voltage gated, being open preferentially at positive (pipette) potentials. Very similar currents were found by patch clamping liposomes containing the isolated OM derived from rat brain mitochondria. Here a conductance of approximately 530 pS, resembling in its electrical characteristics a conductance already attributed to mitochondrial contact sites (Moran et al. 1990), was also detected. Immunoblot assays of mitochondria and of the isolated OM with antibodies against the outer membrane voltage-dependent anion channel (VDAC) (Colombini 1979), showed the presence of the anion channel in each case. However, the typical electrical behaviour displayed by such a channel in planar bilayers could not be detected under our experimental conditions. From this study, the permeability of the OMM appears different from what has been reported hitherto, yet is more in line with that multifarious and dynamic structure which apparently should belong to it, at least within the framework of mitochondrial biogenesis (Pfanner and Neupert 1990).  相似文献   

10.
11.
Anion transport systems in the plasma membrane of vertebrate cells   总被引:5,自引:0,他引:5  
In the case of the red blood cell, anion transport is a highly specific one-for-one exchange catalyzed by a major membrane protein known as band 3 or as capnophorin. This red cell anion-exchange system mediates the Cl-(-)HCO3- exchange responsible for most of the bicarbonate transport capacity of the blood. The rapidly expanding knowledge of the molecular biology and the transport kinetics of this specialized transport system is very briefly reviewed in Section III. Exchange diffusion mechanisms for anions are found in many cells other than erythrocytes. The exchange diffusion system in Ehrlich cells has several similarities to that in red cells. In several cell types (subsection IV-B), there is evidence that intracellular pH regulation depends on Cl-(-)HCO3- exchange processes. Anion exchange in other single cells is described in Section IV, and its role in pH regulation is described in Section VII. Anion exchange mechanism operating in parallel with, and only functionally linked to Na+-H+ or K+-H+ exchange mechanisms can also play a role in cell volume regulation as described in Section VII. In the Ehrlich ascites cell and other vertebrate cells, electroneutral anion transfer has been found to occur also by a cotransport system for cations and chloride operating in parallel with the exchange diffusion system. The cotransport system is capable of mediating secondary active chloride influx. In avian red cells, the cotransport system has been shown to be activated by adrenergic agonists and by cyclic AMP, suggesting that the cotransport is involved in regulatory processes (see subsection V-A.). In several cell types, cotransport systems are activated and play a role during volume regulation, as described in Section V and in Section VII. It is also likely that this secondary active cotransport of chloride plays a significant role for the apparently active extrusion of acid equivalents from certain cells. If a continuous influx of chloride against an electrochemical gradient is maintained by a cotransport system, the chloride disequilibrium can drive an influx of bicarbonate through the anion exchange mechanism, as described in Section VII. Finally, even the electrodiffusion of anions is shown to be regulated, and in Ehrlich cells and human lymphocytes an activation of the anion diffusion pathway plays a major role in cell volume regulation as described in Section VI and subsection VII-B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
The antibiotic protein colicin E1 forms ion channels in planar lipid bilayers that are capable of conducting monovalent organic cations having mean diameters of at least 9 Å. Polyvalent organic cations appear to be completely impermeant, regardless of size. All permeant ions, whether large or small, positively or negatively charged, are conducted by this channel at very slow rates. We have examined the permeability of colicin E1 channels to anionic probes having a variety of sizes, shapes, and charge distributions. In contrast to the behavior of cations, polyvalent as well as monovalent organic anions were found to permeate the colicin E1 channel. Inorganic sulfate was able to permeate the channel only when the pH was 4 or less, conditions under which the colicin E1 protein is predominantly in an anion-preferring conformational state. The less selective state(s) of the colicin E1 channel, observed when the pH was 5 or greater, was not permeable to inorganic sulfate. The sulfate salt of the impermeant cation Bis-T6 (N,N,N,N-tetramethyl-1,6-hexanediamine) had no effect on the single channel conductance of colicin E1 channels exposed to solutions containing 1 m NaCl at pH 5. The complete lack of blocking activity by either of these two impermeant ions indicates that both are excluded from the channel lumen. These results are consistent with our hypothesis that there is but a single location in the lumen of the colicin E1 channel where positively charged groups can be effectively hydrated. This site may coincide with the location of the energetic barrier which impedes the movement of anions.The authors wish to thank Dr. F.S. Cohen for making available unpublished data and for helpful comments. This work was supported by National Institutes of Health grant GM 37396 and by the Howard Hughes Medical Institute Undergraduate Biological Sciences Education Initiative (E.R.K.)  相似文献   

15.
The inner membrane of yeast and mammalian mitochondria has been studiedin situ with a patch clamp electrode. Anion channels were found in both cases, although their behavior and regulation are different. In mammalian mitochondria, the principal channel is of around 100 pS conductance and opens mainly under depolarized membrane potentials. As no physiological compound able to alter its peculiar voltage dependence has yet been found, it is proposed that this channel may serve as a safeguard mechanism for recharging the mitochondrial membrane potential. Two other anion channels, each with a distinct conductance (one of approx. 45 pS, the second of at least a tenfold higher value) and kinetics are harbored in the yeast inner membrane. Matrix ATP was found to interact with both, but with a different mechanism. It is proposed that the 45 pS channel may be involved in the homeostatic mechanism of mitochondrial volume.  相似文献   

16.
Summary The effect of papaverine, an inhibitor of the phosphodiesterase responsible for breakdown of cAMP, on the transepithelial sodium transport across the isolated frog skin was investigated.Serosal addition of papaverine caused initially an increase in the short-circuit current (SCC), a doubling of the cellular cAMP content and a depolarization of the intracellular potential under SCC conditions (V scc).The initial increase in the SCC was followed by a pronounced decrease both in the SCC and in the natriferic action of antidiuretic hormone (ADH), but papaverine had no inhibitory effect on the ability of ADH to increase the cellular cAMP content. As SCC declines, no hyperpolarization was observed.The I/V relationship across the apical membrane during the inhibitory phase, revealed that papaverine reduces the sodium permeability of the apical membrane (P Na a )as well as intracellular sodium concentration. These observations and the previously noted effect of papaverine on V scc indicates that papaverine must have an effect on the cellular Cl or K permeability.The basolateral Na,K,2Cl cotransporter was blocked with bumetanide, which should bring the cellular chloride in equilibrium. Bumetanide had no effect on basal SCC and V scc. When papaverine was added to skins preincubated with bumetanide, the effect of papaverine on SCC and V scc was unchanged. Therefore, the depolarization of V scc, observed during the papaverine induced inhibition of the SCC, must be due to a reduction in the cellular K permeability.In conclusion, it is suggested that papaverine reduces the sodium permeability of the apical membrane and the potassium permeability of the basolateral membrane of the frog skin epithelium.  相似文献   

17.
18.
The potential of boronic acids to improve the bioavailability of carbohydrate derived drugs was investigated through the study of the transport of four sialic acid derivatives through a lipophilic supported liquid membrane at departure phase pH's of 7.4, 8.5 and 10.0. It was found that facilitated transport did occur in most cases, but interestingly, and in contrast to that observed with monosaccharides such as d-fructose, the lipophilic ammonium salt, Aliquat 336, promoted fluxes than those of the boronic acid. The triol side chain of the sialic acid derivatives, combined with the amide at C5, appears to represent a previously unrecognised chloride binding domain which promotes extraction of these compounds into membranes containing Aliquat 336, leading to fluxes greater than those produced by boronic acids.  相似文献   

19.
The biological effects of electric pulses with low rise time, high field strength, and durations in the nanosecond range (nsPEFs) have attracted considerable biotechnological and medical interest. However, the cellular mechanisms causing membrane permeabilization by nanosecond pulsed electric fields are still far from being understood. We investigated the role of actin filaments for membrane permeability in plant cells using cell lines where different degrees of actin bundling had been introduced by genetic engineering. We demonstrate that stabilization of actin increases the stability of the plasma membrane against electric permeabilization recorded by penetration of Trypan Blue into the cytoplasm. By use of a cell line expressing the actin bundling WLIM domain under control of an inducible promotor we can activate membrane stabilization by the glucocorticoid analog dexamethasone. By total internal reflection fluorescence microscopy we can visualize a subset of the cytoskeleton that is directly adjacent to the plasma membrane. We conclude that this submembrane cytoskeleton stabilizes the plasma membrane against permeabilization through electric pulses.  相似文献   

20.
The permeability properties of the lysosomal membrane.   总被引:16,自引:0,他引:16  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号