首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Dong  M G Roth    E Hunter 《Journal of virology》1992,66(12):7374-7382
We have investigated what protein sequences are necessary for glycoprotein incorporation into Rous sarcoma virus (RSV) virions by utilizing the hemagglutinin (HA) protein of influenza virus. Two chimeric HA genes were constructed. In the first the coding sequence for the signal peptide of the RSV env gene product was fused in frame to the entire HA structural gene, and in the second the hydrophobic anchor and cytoplasmic domain sequences of the HA gene were also replaced with those from the RSV env gene. Both chimeric genes, expressed from a simian virus 40 expression vector in CV-1 cells, yielded functional HA proteins that were transported to the cell surface and were able to bind to erythrocytes. When the genes were expressed in combination with the RSV gag-pol gene region in QT6 cells by using a vaccinia virus-T7 expression/complementation system, virions that efficiently incorporated either chimeric protein were assembled. This result indicated that the presence of the RSV env membrane anchor and cytoplasmic sequences did not facilitate HA glycoprotein incorporation into virions. The presence of the RSV env signal sequence allowed the chimeric HA genes to be substituted into the RSV-derived BH-RCAN.HiSV viral genome in place of the RSV env gene. Both chimeric genomes yielded infectious virus that could infect human and avian cells with equal efficiency. These experiments demonstrate that a foreign glycoprotein, efficiently incorporated into virions lacking a native glycoprotein, can confer a broadened host range on the virus. Moreover, because the HA of influenza virus requires the acidic pH of the endosome in order to be activated, these results imply that foreign proteins can modify the normal route of entry of this avian retrovirus.  相似文献   

2.
MA104.11 rhesus kidney cells express several characteristics of polarized epithelial cells, including the formation of "domes" on impermeable substrates, the establishment of a transmonolayer electrical resistance when grown on collagen gels, the polarized maturation of influenza and vesicular stomatitis viruses, and the expression of the glycoproteins of those viruses at a single surface domain. The polarized expression of the influenza virus hemagglutinin (HA) is maintained in MA104.11 cells infected with SV40-derived vectors carrying a cDNA gene for either the wild-type influenza virus HA, a truncated HA gene encoding a secreted form of HA (HAsec), or a chimeric gene encoding a hybrid protein with the external domain of the HA and the transmembrane and cytoplasmic domains of the vesicular stomatitis virus G protein (HAG). Thus, the recognition event separating glycoproteins, such as HA, destined for the apical surface from proteins, such as G, destined for the basolateral membranes involves features of the external domains of the proteins. The transmembrane and cytoplasmic domains of HA have no role in this process.  相似文献   

3.
The influenza virus hemagglutinin (HA) glycoprotein synthesized from cloned DNA in a simian virus 40 vector is expressed on the surface of infected primate cells. Previously, it has been demonstrated that mutant HAs lacking the hydrophobic carboxy terminus fail to anchor on the cell surface and therefore are secreted extracellularly. During analysis of additional HA deletion mutants derived from an HA-simian virus 40 recombinant, we found a mutant with an altered hydrophobic carboxy terminus that exhibited another phenotype. This deletion mutant, dl-12, produced HA that was neither secreted nor expressed on the infected cell surface. The mutant HA was similar to the wild-type HA in apparent molecular weight and extent of glycosylation as assayed by endoglycosidase H sensitivity. The mutant HA localized near the perinuclear region of infected cells as indicated by an indirect immunofluorescence assay. Sequence analysis showed that a 5-base-pair deletion had occurred before the region encoding the hydrophobic carboxy terminus. Nevertheless, the physicochemical properties of the wild-type HA carboxy terminus were maintained in that the truncated HA carboxy terminus consisted of predominantly hydrophobic amino acids followed by several charged amino acids residues. This similarity in the carboxy terminus between the wild-type and mutant HAs may be responsible for the functional similarities observed. In spite of these similarities, the mutant HA failed to mature at the surface. These results suggest that the maturation of the mutant HA is blocked during a late stage in the transit to the cell surface.  相似文献   

4.
The late genes of SV40 are not expressed at significant levels until after the onset of viral DNA replication. We previously identified two hormone response elements (HREs) in the late promoter that contribute to this delay. Mutants defective in these HREs overexpress late RNA at early, but not late, times after transfection of CV-1PD cells. Overexpression of nuclear receptors (NRs) that recognize these HREs leads to repression of the late promoter in a sequence-specific and titratable manner, resulting in a delay in late gene expression. These observations led to a model in which the late promoter is repressed at early times after infection by NRs, with this repression being relieved by titration of these repressors through simian virus 40 (SV40) genome replication to high copy number. Here, we tested this model in the context of the viral life cycle. SV40 genomes containing mutations in either or both HREs that significantly reduce NR binding without altering the coding of any proteins were constructed. Competition for replication between mutant and wild-type viruses in low-multiplicity coinfections indicated that the +1 HRE offered a significant selective advantage to the virus within a few cycles of infection in African green monkey kidney cell lines CV-1, CV-1P, TC-7, MA-134, and Vero but not in CV-1PD' cells. Interestingly, the +55 HRE offered a selective disadvantage in MA-134 cells but had no effect in CV-1, CV-1P, TC-7, Vero, and CV-1PD' cells. Thus, we conclude that these HREs are biologically important to the virus, but in a cell type-specific manner.  相似文献   

5.
Influenza C virus was propagated successfully in primary chicken embryo lung (CEL) and fibroblast cells and in Madin-Darby canine kidney (MDCK) cells. In other cell lines, either no virus or only noninfectious hemagglutinin (HA) was produced. In productively infected cells (CEL), HA and infectious virus appeared by 24 h and reached a maximum by 36 to 48 h, cell-associated virus remaining at a constant low level. Infected Vero cells produced noninfective HA by 24 h which also remained predominantly cell associated until 60 to 72 h, when the cells disintegrated. Viral antigen was demonstrable on membranes of both CEL- and Vero-infected cells at 24 h; Vero cells yielded membrane vesicles containing HA, but none of the spherical or filamentous viral particles synthesized in CEL cells. Influenza C virus produced in cell culture or in eggs differed in several important respects from A and B viruses and from Newcastle diseases virus. All influenza C preparations, regardless of infectivity or source, lacked detectable neuraminidase activity, yet retained the ability specifically to inactivate receptors only for influenza C. Influenza C HA was not inhibited by soluble glycoproteins highly active against HA of A virus. A rat serum glycoprotein uniquely inhibited influenza C by binding to the surface components of virious.  相似文献   

6.
Four chimeric human immunodeficiency virus type 1 (HIV-1) env genes were constructed which encoded the extracellular domain of either the wild-type or a cleavage-defective HIV-1 envelope glycoprotein (gp160) fused at one of two different positions in env to a C-terminal glycosyl-phosphatidylinositol (GPI) attachment signal from the mouse Thy-1.1 glycoprotein. All four of the constructs encoded glycoproteins that were efficiently expressed when Rev was supplied in trans, and the two cleavable forms were processed normally to gp120 and a chimeric "gp41." The chimeric glycoproteins, in contrast to the wild-type glycoprotein, could be cleaved from the surface of transfected cells by treatment with phosphatidylinositol-specific phospholipase C, indicating that they were anchored in the plasma membrane by a GPI moiety. These GPI-anchored glycoproteins were transported intracellularly at a rate only slightly lower than that of the full-length HIV-1 glycoprotein and were present on the cell surface in equivalent amounts. Nevertheless, all four glycoproteins were defective in mediating both cell-cell and virus-cell fusion as determined by syncytium formation in COS-1-HeLa-T4 cell mixtures and trans complementation of an env-defective HIV-1 genome.  相似文献   

7.
We have constructed vaccinia virus recombinants expressing dengue virus proteins from cloned DNA for use in experimental immunoprophylaxis. A recombinant virus containing a 4.0-kilobase DNA sequence that codes for three structural proteins, capsid (C), premembrane (pre-M), and envelope (E), and for nonstructural proteins NS1 and NS2a produced authentic pre-M, E, and NS1 in infected CV-1 cells. Mice immunized with this recombinant were protected against an intracerebral injection of 100 50% lethal doses of dengue 4 virus. A recombinant containing only genes C, pre-M, and E also induced solid resistance to challenge. Deletion of the putative C-terminal hydrophobic anchor of the E glycoprotein did not result in secretion of E from recombinant-virus-infected cells. Recombinants expressing only the E protein preceded by its own predicted N-terminal hydrophobic signal or by the signal of influenza A virus hemagglutinin or by the N-terminal 71 amino acids of the G glycoprotein of respiratory syncytial virus produced glycosylated E protein products of expected molecular sizes. These vaccinia virus recombinants also protected mice.  相似文献   

8.
The hemagglutinin (HA) glycoprotein of influenza virus performs two critical roles during infection: it binds virus to cell surface sialic acids, and under mildly acidic conditions it induces fusion of the virion with intracellular membranes, liberating the genome into the cytoplasm. The pH dependence of fusion varies for different influenza virus strains. Here we report the isolation and characterization of a naturally occurring variant of the X31 strain that fuses at a pH 0.2 units higher than the parent strain does and that is less sensitive to the effects of ammonium chloride, a compound known to elevate endosomal pH. The bromelain-solubilized ectodomain of the variant HA displayed a corresponding shift in the pH at which it changed conformation and bound to liposomes. Cloning and sequencing of the variant HA gene revealed amino acid substitutions at three positions in the polypeptide. Two substitutions were in antigenic determinants in the globular region of HA1, and the third occurred in HA2 near the base of the molecule. By using chimeric HA molecules expressed in CV-1 cells from simian virus 40-based vectors, we demonstrated that the change in HA2 was solely responsible for the altered fusion phenotype. This substitution, asparagine for aspartic acid at position 132, disrupted a highly conserved interchain salt bridge between adjacent HA2 subunits. The apparent role of this residue in stabilizing the HA trimer is consistent with the idea that the trimer dissociates at low pH. Furthermore, the results demonstrate that influenza virus populations contain fusion variants, raising the possibility that such variants may play a role in the evolution of the virus.  相似文献   

9.
本文作者从痘苗病毒天坛株Sal I基因文库中确定并分离了痘苗病毒血凝素(HA)基因并组建了以HA为选择标记的系列表达载体,可用于不同结构和不同要求的外源基因在真核细胞中的表达。本系列载体的优点是,在病毒重组过程中可避开传代细胞系,一次性选择出可供疫苗使用的重组病毒。而HA阴性的重组病毒的毒力在家兔皮内试验中,未见明显下降。  相似文献   

10.
Primary cell cultures of African Green monkey kidney (AGMK) contain polarized epithelial cells in which influenza virus matures predominantly at the apical surfaces above tight junctions. Influenza virus glycoproteins were found to be localized at the same membrane domain from which the virus budded. When polarized primary AGMK cells were infected with recombinant SV40 viruses containing DNA coding for either an influenza virus H1 or H2 subtype hemagglutinin (HA), the HA proteins were preferentially expressed at the apical surface in a manner identical to that observed in influenza virus-infected cells. Thus, cellular mechanisms for sorting membrane glycoproteins recognize some structural feature of the HA glycoprotein itself, and other viral proteins are not necessary for this process.  相似文献   

11.
ts5, a temperature-sensitive mutant of influenza B virus, belongs to one of seven recombination groups. When the mutant infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating and enzymatic activities were undetectable. However, viral protein synthesis and transport of hemagglutinin (HA) and neuraminidase (NA) to the cell surface were not affected. The NA was found as a monomer within cells even at 32 degrees C, in contrast to wild-type virus NA, existing mostly as an oligomer, but the mutant had oligomeric NA, like the wild-type virus. Its enzymatic activity was more thermolabile than that of wild-type virus. Despite the low yield, large aggregates of progeny virus particles were found to accumulate on the cell surface at the nonpermissive temperature, and these aggregates were broken by treatment with bacterial neuraminidase, with the concomitant appearance of hemagglutinating activity, suggesting that NA prevents the aggregation of progeny virus by removal of neuraminic acid from HA and cell receptor, allowing its release from the cells. Further treatment with trypsin resulted in the recovery of infectivity. When bacterial NA was added to the culture early in infection, many hemagglutinable infectious virus was produced. We also suggest that the removal of neuraminic acid from HA by NA is essential for the subsequent cleavage of HA by cellular protease. Nucleotide sequence analysis of RNA segment 6 revealed that ts5 encoded five amino acid changes in the NA molecule but not in NB.  相似文献   

12.
Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.  相似文献   

13.
Replication of human influenza A viruses and proteolytic cleavage of the viral glycoprotein HA0 HA1/2 were studied in passaged cultures of epithelial cells of the serous membrane of human large intestine (CACO-2 line), dog kidney cells (MDCK), and monkey kidney cells (CV-1). Cleavage of the viral glycoprotein HA0, synthesis of activated virions, multicycle virus infection, and effective production of viral foci under an agarose overlayer were found in CACO-2 cells. By pulse–chase labeling of viral glycoproteins, testing the sensitivity to endoglycosidase-H of the viral glycoproteins HA0 and HA1/2 synthesized, and inhibiting the HA0 proteolysis with brefeldin A, the HA0 HA1/2 proteolysis was established to occur in the late stages of intracellular transport in the trans-Golgi and plasma membrane areas of the cells. Proteolysis of the viral glycoprotein HA0 in CACO-2 cells was suppressed by aprotinin, a natural inhibitor of serine proteinases. Unlike MDCK and CV-1 cells resistant to apoptosis induced by influenza virus, CACO-2 cells retained their viability for 2-3 days after infection with human influenza A virus.  相似文献   

14.
The influenza virus A/Japan/305/57 hemagglutinin (HA) can be converted from a protein that is essentially excluded from coated pits into one that is internalized at approximately the rate of uptake of bulk membrane by replacing the HA transmembrane and cytoplasmic sequences with those of either of two other glycoproteins (Roth et al., 1986. J. Cell Biol. 102:1271-1283). To identify more precisely the foreign amino acid sequences responsible for this change in HA traffic, DNA sequences encoding the transmembrane (TM) or cytoplasmic (CD) domains of either the G glycoprotein of vesicular stomatitis virus (VSV) or the gC glycoprotein of herpes simplex virus were exchanged for those encoding the analogous regions of wild type HA (HA wt). HA-HA-G and HA-HA-gC, chimeras that contain only a foreign CD, resembled HA wt in having a long residence on the cell surface and were internalized very slowly. HA-HA-gC was indistinguishable from HA in our assays, whereas twice as much HA-HA-G was internalized as was HA wt. However, HA-G-HA, containing only a foreign TM, was internalized as efficiently as was HA- G-G, a chimeric protein with transmembrane and cytoplasmic sequences of VSV G protein. Conditions that blocked internalization through coated pits also inhibited endocytosis of the chimeric proteins. Although the external domains of the chimeras were less well folded than that of the wild type HA, denaturation of the wild type HA external domain by treatment with low pH did not increase the interaction of HA with coated pits. However, mutation of four amino acids in the TM of HA allowed the protein to be internalized, indicating that the property that allows HA to escape endocytosis resides in its TM. These results indicate that possession of a cytoplasmic recognition feature is not required for the internalization of all cell surface proteins and suggest that multiple mechanisms for internalization exist that operate at distinctly different rates.  相似文献   

15.
Li ZN  Mueller SN  Ye L  Bu Z  Yang C  Ahmed R  Steinhauer DA 《Journal of virology》2005,79(15):10003-10012
Large polypeptides of the Bacillus anthracis protective antigen (PA) were inserted into an influenza A virus hemagglutinin glycoprotein (HA), and the chimeric proteins were functionally characterized and incorporated into infectious influenza viruses. PA domain 1', the region responsible for binding to the other toxin components, the lethal factor and edema factor, and domain 4, the receptor binding domain (RBD), were inserted at the C-terminal flank of the HA signal peptide and incorporated into the HA1 subunit of HA. The chimeric proteins, designated as LEF/HA (90 amino acid insertion) and RBD/HA (140 amino acid insertion), were initially analyzed following expression using recombinant vaccinia viruses. Both chimeric proteins were shown to display functional phenotypes similar to that of the wild-type HA. They transport to the cell surface, can be cleaved into the HA1 and HA2 subunits by trypsin to activate membrane fusion potential, are able to undergo the low-pH-induced conformational changes required for fusion, and are capable of inducing the fusion process. We were also able to generate recombinant influenza viruses containing the chimeric RBD/HA and LEF/HA genes, and the inserted PA domains were maintained in the HA gene segments following several passages in MDCK cells or embryonated chicken eggs. Furthermore, DNA immunization of mice with plasmids that express the chimeric RBD/HA and LEF/HA proteins, and the recombinant viruses containing them, induced antibody responses against both the HA and PA components of the protein. These approaches may provide useful tools for vaccines against anthrax and other diseases.  相似文献   

16.
Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution.  相似文献   

17.
Infection of quiescent CV-1 cells with simian virus 40 mutant tsA30 at 37 degrees C resulted in the induction of two rounds of cellular DNA synthesis in T-antigen-positive cells, as previously described for wild-type simian virus 40. Following infection with tsA30 at 40.5 degrees C, T-antigen-positive cells were induced into S phase and reached a diploid G2 DNA content; however, a second S phase was not initiated. The failure of tsA30-infected CV-1 cells to enter tetraploid S phase at 40.5 degrees C identifies a T-antigen function, distinct from T-antigen functions responsible for stimulation of cell DNA synthesis, which is required for initiation of a second round of DNA synthesis without mitosis.  相似文献   

18.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.  相似文献   

19.
An efficient method for introducing macromolecules into living cells   总被引:27,自引:11,他引:16       下载免费PDF全文
The hemagglutinin (HA) of influenza virus was used to obtain efficient and rapid bulk delivery of antibodies and horseradish peroxidase (HRP) into the cytoplasm of living tissue culture cells. By exploiting HA's efficient cell surface expression, its high affinity for erythrocytes, and its acid-dependent membrane fusion activity, a novel delivery method was developed. The approach is unique in that the mediator of both binding and fusion (the HA) is present on the surfaces of the target cells. A recently developed 3T3 cell line which permanently expresses HA, Madin-Darby canine kidney cells infected with influenza virus, and CV-1 cells infected with a simian virus 40 vector carrying the HA gene were used as recipient cells. Protein-loaded erythrocytes were bound to the HA on the cell surface and a brief drop in pH to 5.0 was used to trigger HA's fusion activity and hence delivery. About 3 to 8 erythrocytes fused per 3T3 and CV-1 cell, respectively, and 75-95% of the cells received IgG or HRP. Quantitative analysis showed that 1.8 X 10(8) molecules of HRP and 1.4 X 10(7) IgG molecules were delivered per CV-1 cell and 6.2 X 10(7) HRP molecules per 3T3 cell. Cell viability, as judged by methionine incorporation into protein and cell growth and division, was not impaired. Electron and fluorescence microscopy showed that the fused erythrocyte membranes remained as discrete domains in the cell's plasma membrane. The method is simple, reliable, and nonlytic. The ability to simultaneously and rapidly deliver impermeable substances into large numbers of cells will permit biochemical analysis of the fate and effect of a variety of delivered molecules.  相似文献   

20.
Two mutations affecting herpes simplex virus type 1 glycoprotein B were mapped by marker rescue using cloned sequences of wild-type herpes simplex virus type 1 strain KOS DNA. One mutant, tsB5, is a temperature-sensitive mutant which does not express mature, functional glycoprotein B at the nonpermissive temperature. The other mutant, marB1.1, expresses an antigenic variant of glycoprotein B and was selected for resistance to neutralization by a monoclonal antibody. The mutation in tsB5 mapped to a 1.2-kilobase segment of the herpes simplex virus type 1 genome between coordinates 0.361 and 0.368, whereas the mutation in marB1.1 mapped to a 1.6-kilobase segment between coordinates 0.350 and 0.361. An in situ enzyme immunoassay was used to detect plaques of recombinant wild-type virus among the progeny of transfections with mutant marB1.1 DNA and wild-type DNA fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号