首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Duplications of proximal 15q have been found in individuals with autistic disorder (AD) and varying degrees of mental retardation. Often these abnormalities take the form of a supernumerary inverted duplicated chromosome 15, more properly described as an isodicentric chromosome 15, or idic(15). However, intrachromosomal duplications also have been reported. In a few cases, unaffected mothers, as well as their affected children, carry the same duplications. During the course of the genotyping of trios of affected probands with AD and their parents, at the positional candidate locus D15S122, an intrachromosomal duplication of proximal 15q was detected by microsatellite analysis in a phenotypically normal mother. Microsatellite and methylation analyses of the pedigree in the following report show that, among three children, the two with autism or atypical autism have maternal inheritance of a 15q11-q13 duplication whereas the third child, who is unaffected, did not inherit this duplication. Their mother's 15q11-q13 duplication arose de novo from her father's chromosomes 15. This finding documents, for the first time, the significance of parental origin for duplications of 15q11-q13. In this family, paternal inheritance leads to a normal phenotype, and maternal inheritance leads to autism or atypical autism.  相似文献   

2.
Maternally derived duplication of the imprinted region of chromosome 15q11-q14 leads to a complex neurobehavioral phenotype that often includes autism, cognitive deficits, and seizures. Multiple repeat elements within the region mediate a variety of rearrangements, including interstitial duplications, interstitial triplications, and supernumerary isodicentric marker chromosomes, as well as the deletions that cause Prader-Willi and Angelman syndromes. To elucidate the molecular structure of these duplication chromosomes, we designed a high-resolution array comparative genomic hybridization (array CGH) platform. The array contains 79 clones that form a gapped contig across the critical region on chromosome 15q11-q14 and 21 control clones from other autosomes and the sex chromosomes. We used this array to examine a set of 48 samples from patients with segmental aneuploidy of chromosome 15q. Using the array, we were able to determine accurately the dosage, which ranged from 1 to 6 copies, and also to detect atypical and asymmetric rearrangements. In addition, the increased resolution of the array allowed us to position two previously reported breakpoints within the contig. These results indicate that array CGH is a powerful technique to study rearrangements of proximal chromosome 15q.  相似文献   

3.
Most genome linkage scans for autism spectrum disorders (ASDs) have failed to be replicated. Recently, a new ASD phenotypic sub-classification method was developed which employed cluster analyses of severity scores from the Autism Diagnostic Interview-Revised (ADI-R). Here, we performed linkage analysis for each of the four identified ADI-R stratified subgroups. Additional stratification was also applied to reduce intra-family heterogeneity and to investigate the impact of gender. For the purpose of replication, two independent sets of single nucleotide polymorphism markers for 392 families were used in our study. This deep subject stratification protocol resulted in 16 distinct group-specific datasets for linkage analysis. No locus reached significance for the combined non-stratified cohort. However, study-wide significant (P = 0.02) linkage scores were reached for chromosomes 22q11 (LOD = 4.43) and 13q21 (LOD = 4.37) for two subsets representing the most severely language impaired individuals with ASD. Notably, 13q21 has been previously linked to autism with language impairment, and 22q11 has been separately associated with either autism or language disorders. Linkage analysis on chromosome 5p15 for a combination of two stratified female-containing subgroups demonstrated suggestive linkage (LOD = 3.5), which replicates previous linkage result for female-containing pedigrees. A trend was also found for the association of previously reported 5p14-p15 SNPs in the same female-containing cohort. This study demonstrates a novel and effective method to address the heterogeneity in genetic studies of ASD. Moreover, the linkage results for the stratified subgroups provide evidence at the gene scan level for both inter- and intra-family heterogeneity as well as for gender-specific loci.  相似文献   

4.
Two patients with specific and similar phenotypes were both found to have an unusual marker chromosome present in 70%-80% of their lymphocytes at routine cytogenetic examination. The marker chromosomes were isolated by flow sorting and were amplified by degenerate oligonucleotide-primed PCR. These libraries and a cosmid probe located at 15q26 were used to characterize the marker chromosomes by FISH. Both marker chromosomes were found to consist of duplicated chromosome material from the distal part of chromosome 15q and were identified as inv dup(15) (qter-->q23::q23-->qter) and inv dup(15) (qter-->q24::q24-->qter), respectively. Hence, the markers did not include any known centromere region, and no alpha-satellite DNA could be detected at the site of the primary constriction. Tetrasomy 15q may be a new syndrome, associated with a specific type of marker chromosome. In addition, further analyses of this type of marker chromosome might give new insight into the structure and function of the mammalian centromere.  相似文献   

5.
OBJECTIVE: Although information on the cytogenetic characteristics of meningioma tumors has accumulated progressively over the past few decades, information on the genetic heterogeneity of meningiomas is still scanty. The aim of the present study was to analyze by interphase fluorescence in situ hybridization (FISH) the incidence of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y in a group of 70 consecutive meningioma tumors. Another goal was to establish the potential associations among the altered chromosomes, as a way to assess both intertumoral and intratumoral heterogeneity. METHODS: For the purpose of the study, 70 patients diagnosed with meningioma were analyzed. Interphase FISH for the detection of numerical abnormalities for chromosomes 1, 9, 10, 11, 14, 15, 17, 22, X, and Y was applied to fresh tumor samples from each of the patients studied. RESULTS: The overall incidence of numerical abnormalities was 76%. Chromosome Y in males and chromosome 22 in the whole series were the most common abnormalities (46% and 61%, respectively). Despite the finding that monosomy of chromosome 22/22q(-) deletions are the most frequent individual abnormality (53%), we have observed that chromosome gains are significantly more common than chromosome losses (60% versus 40%). Chromosome gains corresponded to abnormalities of chromosomes 1 (27%), 9 (25%), 10 (23%), 11 (22%), 14 (33%), 15 (22%), 17 (23%), and X in females (35%) and males (23%) whereas chromosome losses apart from chromosome 22 frequently involved chromosomes 14 (19%), X in males (23%), and Y in males (32%). Although an association was found among most gained chromosomes on one side and chromosome losses on the other side, different association patterns were observed. Furthermore, in the latter group, monosomy 22/22q(-) was associated with monosomy X in females and monosomy 14/14q(-) was associated with nulisomy Y in males. In addition, chromosome losses usually involved a large proportion of the tumor cells whereas chromosome gains were restricted to small tumor cell clones, including tetraploid cells. CONCLUSIONS: Our results show that meningiomas are genetically heterogeneous tumors that display different patterns of numerical chromosome changes, as assessed by interphase FISH.  相似文献   

6.
Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.  相似文献   

7.
It is assumed that the genetic mechanism of pathogenesis of such widely spread neural and mental diseases as schizophrenia (SZ), autism, ataxia-telangiectasia (AT), and Alzheimer’s disease (AD) is associated with structural and functional genomi biological markers of genomic instability. The currently available methods of molecular cytogenetics (I-MFISH, QFISH, and ICS-MCB) facilitate the solution of numerous fundamental biological problems, including analysis of genomic variations in brain cells. Using these methods, we have studied for the first time aneuploidy in human embryo and adult brain cells (normal and with AT, AD, and SZ) as well as in blood cells of children with autism. The level of aneuploidy was increased two- to threefold in the embryo brain with a subsequent reduction of the number of abnormal cells in the adult brain. In the case of SZ, mosaic aneuploidy for chromosomes 1, 18, and X was found. The study of blood cells from children with autism showed chromosomal mosaicism for chromosomes X, 9, and 15. In the case of AT, we observed a global expression of aneuploidy in up to 20–50% of cortex and cerebellum neurons. In addition, a local instability of chromosome 14 was revealed in the degenerating cerebellum in the form of breaks in the 14q12 region. In the case of AD, a tenfold increase was observed in the level of aneuploidy for chromosome 21 in brain sections subjected to neurodegeneration. These data indicate that mosaic genomic instability in nerve cells is one of the mechanism of neurodegenerative and mental diseases.  相似文献   

8.
We report a case having multiple abnormalities including the simultaneous presence of the heart defect and central nerve system abnormalities, which has been reported in a few cases, and with a partial trisomy 15q. Partial trisomy 15q has been inherited from a balanced translocation carried by his phenotypically normal father, detected by traditional banding and fluorescence in situ hybridization (FISH). Application of FISH using whole chromosome specific library probes, locus specific and repetitive probes allowed us to detect the translocation between chromosomes 15q and 17q. Simultaneous application of probes revealed the position of the translocation. Interestingly, in addition to the chromosomes 15 pericentromeric signals, the use of chromosome 15 beta-satellite III probe demonstrated an extra signal on chromosome 14 in both metaphase, and lighted three signals interphase nuclei which was inherited from his father. This patient is compared with other partial trisomy 15q patients reported in the literature. The results are also discussed in relation to genetic counselling for the possible relation of chromosome abnormality and clinical findings.  相似文献   

9.
Fauth E  Zankl H 《Mutation research》1999,440(2):147-156
Fluorescence in situ hybridisation (FISH) technique with chromosome specific library (CSL) DNA probes for all human chromosomes were used to study about 9000 micronuclei (MN) in normal and idoxuridine (IUdR)-treated lymphocyte cultures of female and male donors. In addition, MN rates and structural chromosome aberrations were scored in Giemsa-stained chromosome spreads of these cultures. IUdR treatment (40 microg/ml) induced on the average a 12-fold increase of the MN rate. Metaphase analysis revealed no distinct increase of chromosome breaks but a preferential decondensation at chromosome 9q12 (28-79%) and to a lower extend at 1q12 (8-21%). Application of FISH technique with CSL probes to one male and one female untreated proband showed that all human chromosomes except chromosome 12 (and to a striking high frequency chromosomes 9, X and Y) occurred in spontaneous MN. In cultures containing IUdR, the chromosomal spectrum found in MN was reduced to 10 chromosomes in the male and 13 in the female proband. Eight chromosomes (2, 6, 12, 13, 14, 15, 17 and 18) did not occur in MN of both probands. On the contrary chromosomes 1 and especially 9 were found much more frequently in the MN of IUdR-treated cultures than in MN of control cultures. DAPI-staining revealed heterochromatin signals in most of the IUdR-induced MN. In an additional study, spontaneous and IUdR-induced MN were investigated in lymphocytes of another female donor using CSL probes only for chromosomes 1, 6, 9, 15, 16 and X. The results confirmed the previous finding that chromosomes 1 and 9 occur very often in MN after IUdR-treatment. The results indicate that decondensation of heterochromatic regions on chromosomes 1 and 9 caused by IUdR treatment strongly correlates with MN formation by these chromosomes.  相似文献   

10.
We previously isolated two polymorphic chromosome 21q probes, pVC1.21c (D21S190) and pVC1.34a (D21S149), localized in 21qcen-21q21.2. In addition, pVC1.21c recognized a sequence in 21q22.1-q22.2 and both probes cross-hybridized with non-chromosome-21 sequences. In this study we refined the proximal 21q locations of probes pVC1.21c and pVC1.34a to 21q11.1 and demonstrated that they recognize sequences on chromosome 13 but not on chromosomes 14, 15, and 22. Furthermore, the polymorphisms associated with the two loci were assigned to pericentromeric 13q for pVC1.34a and distal 21q for pVC1.21c. Our results are indicative of a region of unique sequence homology in the pericentromeric region of the long arms of chromosomes 13 and 21.  相似文献   

11.
Summary The behaviour of chromosome 15 is very different from that of the other acrocentric chromosomes. The cytogenetic characteristics of rearrangements associated with Prader-Willi syndrome (PWS) are analyzed as similar rearrangements irrespective of the associated phenotype (reciprocal translocations of chromosome 15, small bisatellited additional chromosomes, Robertsonian translocations, interstitial deletions, pericentric inversions). This study suggests that: (1) The proximal (15q) region and PWS seem to be indissociable; (2) chromosome 15 has an indisputable cytogenetic originality which could be related to its histochemical properties. Chromosome 15 constitutive heterochromatin usually contains much 5-methylcytosine-rich DNA and a large amount of each of the four satellite DNAs. Furthermore the existence in the proximal (15q) region of one or several palindromic sequences could be postulated to explain the great lability of this region of chromosome 15.  相似文献   

12.
Summary Eight patients are reported with a de nov extra inverted duplicated chromosome 15. The abnormal chromosome was considered to be the same in all cases, but its precise delineation remained uncertain and was defined as either 15qter15q12::15q1215pter or 15pter15q11::15q1315pter. Analysis with various techniques of the satellite regions of the bisatellited chromosomes demonstrated maternal derivation in six and paternal derivation in one of the seven families. A nonsister chromatid exchange between the two homologous chromosomes 15 is considered a likely origin of the inv dup(15) in the cases with maternal derivation; in the only case of paternal derivation, however, the abnormal chromosome originated from one single chromosome 15. The clinical findings confirm that patients with inv dup(15) have mental and developmental retardation and are frequently affected by seizures, while severe physical malformations are absent.  相似文献   

13.
Chromosome-specific DNA markers provide a powerful approach for studying complex problems in human genetics and offer an opportunity to begin understanding the human genome at the molecular level. The approach described here for isolating and characterizing DNA markers specific to human chromosome 15 involved construction of a partial chromosome-15 phage library from a human/Chinese hamster cell hybrid with a single human chromosome 15. Restriction fragments that identified unique- and low-copy loci on chromosome 15 were isolated from the phage inserts. These fragments were regionally mapped to the chromosome by three methods, including Southern analysis with a mapping panel of cell hybrids, in situ hybridization to metaphase chromosomes, and quantitative hybridization or dosage analysis. A total of 42 restriction fragments of unique- and low-copy sequences were identified in 14 phage. The majority of the fragments that have been characterized so far exhibited the hybridization pattern of a unique locus on chromosome 15. Regional mapping assigned these markers to specific locations on chromosome 15, including q24-25, q21-23, q13-14, q11-12, and q11. RFLP analysis revealed that several markers displayed polymorphisms at frequencies useful for genetic linkage analysis. The markers mapped to the proximal long arm of chromosome 15 are particularly valuable for the molecular analysis of Prader-Willi syndrome, which maps to this region. Polymorphic markers in this region may also be useful for definitively establishing linkage with one form of dyslexia. DNA probes in this chromosomal region should facilitate molecular structural analysis for elucidation of the nature of instability in this region, which is frequently associated with chromosomal aberrations.  相似文献   

14.
The autistic disorder was firstly described by Leo Kanner sixty years ago. This complex developmental disability is characterized by social and communicative impairments and repetitive and stereotyped behaviours and interests. The prevalence of autism in the general population is about 1 in 1,000, with four males affected for one female. In approximately 15% of the cases, autism is associated with known genetic disorders, such as fragile X syndrome, tuberous sclerosis or Rett syndrome. Nevertheless, a recognised medical etiology can only be identified in a minority of cases. A higher recurrence risk in families with autistic subjects (45 times greater than the prevalence in the general population) and higher concordance for autism among monozygotic (60-90%) than dizygotic (0-10%) twins argue for a genetic predisposition to idiopathic autism. The past decade has been marked by an increased interest in the genetic basis of autism, with a series of multiple independent whole genome scans and chromosomal abnormalities studies. These analyses have pointed out several candidate regions on chromosomes 2q, 7q, 6q, 15q and sex chromosomes. These regions possess candidate genes that have been screened for mutations or association with autism. However, a clear involvement of a major susceptibility gene (or genes) in autism remains far from clear. The results from linkage studies and the clear drop in the concordance rates between monozygotic and dizygotic twins suggests that the genetic aetiology of autism is certainly heterogeneous (different genes in different families) and polygenic (more than one affected gene per individual). The almost finished sequence of the human genome and the generation of haplotype maps will shed light on the inter-individual genetic variability and will certainly increase the power and reliability of association studies for complex traits, such as autism.  相似文献   

15.
Summary A case of Prader-Willi syndrome (PWS) associated with a de novo unbalanced 15q;17q reciprocal translocation presumptively resulting from the tertiary monosomic form of 3:1 meiotic disjunction is described. Twenty-three similar unbalanced translocations have been identified from the literature. The 24 karyotypes are characterised by having 45 chromosomes, monosomy for the pericentromeric region of chromosome 15 (range pter»q11 to q21), and little monosomy of the recipient (non-15) chromosome. Two-thirds of the cases with these karyotypes have phenotypic features of PWS. It seems probable that (i) where unbalanced reciprocal translocations are associated with PWS, they will almost invariably be presumptive segregants of the tertiary monosomic form of 3:1 disjunction and (ii) the majority of cases found with this type of karyotype, particularly it appears when de novo in origin, will be associated with phenotypic features of PWS.  相似文献   

16.
Individuals with an extra X chromosome are at increased risk for autism symptoms. This study is the first to assess theory of mind and facial affect labeling in children with an extra X chromosome. Forty‐six children with an extra X chromosome (29 boys with Klinefelter syndrome and 17 girls with Trisomy X), 56 children with autism spectrum disorder (ASD) and 88 non‐clinical controls, aged 9–18 years, were included. Similar to children with ASD, children with an extra X chromosome showed significant impairments in social cognition. Regression analyses showed that different cognitive functions predicted social cognitive skills in the extra X and ASD groups. The social cognitive deficits were similar for boys and girls with an extra X chromosome, and not specific for a subgroup with high Autism Diagnostic Interview Revised autism scores. Thus, children with an extra X chromosome show social cognitive deficits, which may contribute to social dysfunction, not only in children showing a developmental pattern that is ‘typical’ for autism but also in those showing mild or late presenting autism symptoms. Our findings may also help explain variance in type of social deficit: children may show similar social difficulties, but these may arise as a consequence of different underlying information processing deficits.  相似文献   

17.
Fluorescence in situ hybridisation (FISH) technique with chromosome specific library (CSL) DNA probes for all human chromosomes were used to study about 9000 micronuclei (MN) in normal and idoxuridine (IUdR)-treated lymphocyte cultures of female and male donors. In addition, MN rates and structural chromosome aberrations were scored in Giemsa-stained chromosome spreads of these cultures. IUdR treatment (40 μg/ml) induced on the average a 12-fold increase of the MN rate. Metaphase analysis revealed no distinct increase of chromosome breaks but a preferential decondensation at chromosome 9q12 (28–79%) and to a lower extend at 1q12 (8–21%). Application of FISH technique with CSL probes to one male and one female untreated proband showed that all human chromosomes except chromosome 12 (and to a striking high frequency chromosomes 9, X and Y) occurred in spontaneous MN. In cultures containing IUdR, the chromosomal spectrum found in MN was reduced to 10 chromosomes in the male and 13 in the female proband. Eight chromosomes (2, 6, 12, 13, 14, 15, 17 and 18) did not occur in MN of both probands. On the contrary chromosomes 1 and especially 9 were found much more frequently in the MN of IUdR-treated cultures than in MN of control cultures. DAPI-staining revealed heterochromatin signals in most of the IUdR-induced MN. In an additional study, spontaneous and IUdR-induced MN were investigated in lymphocytes of another female donor using CSL probes only for chromosomes 1, 6, 9, 15, 16 and X. The results confirmed the previous finding that chromosomes 1 and 9 occur very often in MN after IUdR-treatment. The results indicate that decondensation of heterochromatic regions on chromosomes 1 and 9 caused by IUdR treatment strongly correlates with MN formation by these chromosomes.  相似文献   

18.
Arm-specific and subtelomeric region-specific painting probes for Chinese hamster chromosomes have been generated by microdissection and use of the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). Fluorescence in situ hybridization (FISH) analyses using these probes demonstrated their specificity. These probes painted every chromosome arm and a total of 15 subtelomeric regions, namely, both ends of chromosomes 1, 2, 3, 4, and 8 and one end of chromosome arms 5q, 6q, 7q, 9p, and Xp. Many cryptic chromosomal rearrangements in the CHO-9 and V79 cell lines that were not detectable with whole chromosome paints could be recognized when these newly developed probes were used.  相似文献   

19.
A 13-year-old girl with an unbalanced karyotype 45,XX,-15,der(22)t(15;22)(q13;q13.3) de novo had Prader-Willi syndrome (PWS), (score 13.5), but with features of mental and physical retardation more severe than usually seen in PWS. The clinical diagnosis of PWS was confirmed by methylation analysis that showed absence of the paternal band. With GTG banding, the cytogenetic breakpoint on chromosome 15q13, with 15q14 intact, encompassed the PWS region, while the breakpoint on 22q was terminal. Investigations with FISH utilised ten different probes/combinations, namely SNRPN/PML, TUPLE1/22q13.3, TUPLE/ARSA, GABRB3, three YAC clones and one cosmid for specific regions within chromosome 15q, painting probes for the long arm of chromosomes 15 and 22 and a pantelomere probe. Deletion of SNRPN,TYAC 9 (at 15q11-12), TYAC19 (at 15q13) and GABRB3 (within the PWS locus), was evident on the derivative (22) chromosome, while TYAC10 (at 15q22), cos15-5 (at 15q22) and PML (15q22) were not deleted. On the der(22), 22q13.3 and ARSA were not deleted, but the most distal non specific pantelomeric probe was deleted. Thus, the severe phenotype could be attributable to deletion on chromosome 15q extending beyond q13 to q14, (further than the usual chromosome 15q deletion (q11-13) in PWS), or be related to loss of the very terminal 22q region (from ARSA to the pantelomere) or be due to genetic factors elsewhere in the genome.  相似文献   

20.
Unbalanced whole-arm translocations (WATs) of the long arm of chromosome 1, resulting in complete trisomy 1q, are chromosomal abnormalities detectable in both solid tumors and hematologic neoplasms. Among the WATs of 1q to acrocentric chromosomes, a few patients with der(1;15) described as a dicentric chromosome have been reported so far, whereas cases of der(1;14) are much rarer. We report on a case of der(1;14) detected as single anomaly in a patient with myelodysplastic syndrome. The aim of our work was to investigate the breakpoints of the (1;14) translocation leading to the der(1;14). Fluorescence in situ hybridization (FISH) experiments have been performed on chromosome preparations from bone marrow aspirate, using specific centromeric probes of both chromosomes, as well as a probe mapping to 1q11 band. FISH results showed that in our patient the derivative chromosome was monocentric with a unique centromere derived from chromosome 14. The breakpoints of the translocation were located in the short arm of chromosome 14 and in the long arm of chromosome 1, between the alphoid D1Z5 and the satellite II domains. The 1q breakpoint was within the pericentromeric region of chromosome 1, which is notoriously an unstable chromosomal region, involved in different chromosomal rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号