首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glucuronidation of o-aminophenol is unaffected by p-nitrophenyl gluronide when native microsomal fractions are the source of UDP-glucuronyltransferase. When microsomal fractions treated with Lubrol detergent are the source of the enzyme, however, p-nitrophenyl glucuronide exhibits competitive inhibition of o-aminophenol glucuronidation. In addition, the apparent K1 for p-nitrophenyl glucuronide is the same whether o-aminophenol or p-nitrophenol is the acceptor substrate. The data suggest that UDP-glucuronyltransferase has one binding site for the two phenols and that the absence of inhibition observed in native microsomal fractions is dependent on an intact microsomal membrane.  相似文献   

2.
The rate at which a specific, purified form of microsomal UDP-glucuronyltransferase (designated as the GT2P type of this enzyme) catalyzes the hydrolysis of UDP-glucuronic acid was measured with pure, delipidated enzyme and enzyme reconstituted with different lysophosphatidylcholines. This activity of the GT2P type of UDP-glucuronyltransferase is referred to as alpha-glucuronidase activity. For delipidated enzyme, the rate of hydrolysis of UDP-glucuronic acid catalyzed by GT2P extrapolated to infinite concentrations of UDP-glucuronic acid was 1 X 10(-9) mol/min/mg of protein. This compares with a rate of glucuronidation of p-nitrophenol of 96 X 10(-9) mol/min/mg of enzyme, for delipidated enzyme. Addition of oleoyl- or myristoyllysophosphatidylcholine to GT2P did not affect the alpha-glucuronidase activity significantly. This activity was stimulated, however, in the presence of compounds that bind at the aglycone site but that do not undergo glucuronidation. alpha-Glucuronidase activity extrapolated to infinite concentration of UDP-glucuronic acid was 4.0 X 10(-9) mol/min/mg for delipidated enzyme assayed in the presence of less than saturating concentrations of p-nitrophenyl phenyl ether. Moreover, when the aglycone site of GT2P was occupied by ethers, the alpha-glucuronidase activity of this enzyme was enhanced by addition of phospholipids to delipidated enzyme. The extent of activation of the alpha-glucuronidase activity of GT2P, when the aglycone site was occupied, depended on the acyl chain of the lipid added to delipidated enzyme. These data indicate that the GT2P form of UDP-glucuronyltransferase catalyzes the hydrolysis of UDP-glucuronic acid at a significant rate and that lysophosphatidylcholines can influence this rate.  相似文献   

3.
1. Hepatic microsomal UDP-glucuronyltransferase (EC 2.4.1.17) derived from either weanling or adult rats exhibits three pH optima, at pH 5.4, 7.2 and 9.2, when o-aminophenol is the acceptor substrate, whereas p-nitrophenol is the acceptor substrate only on pH optimum is observed, at pH 5.4.2. Prior treatment of rats of either age with 3-methylcholanthrene results in a 2-3-fold increase in o-aminophenol conjugation at pH 5.4 and a 6-9-fold increase at pH 9.2. At pH 7.2, the induced enzyme is 2 to 3 times more active towards o-aminophenol than the control enzyme, but no pH optimum is demonstrable. 3. o-Aminophenol conjugation at pH 5.4 and 9.2 is inhibited competitively by both p-nitrophenol and p-nitrophenyl glucuronide, suggesting that the two phenolic aglycones share the same binding site. At pH 7.2, however, p-nitrophenyl glucuronide does not inhibit o-aminophenol conjugation, suggesting that the binding site at this pH is not shared by the two phenols. These data are consistent with the existence of more than one binding site for o-aminophenol on UDP-glucuronyltransferase.  相似文献   

4.
1. Glucuronide formation of bilirubin and p-nitrophenol in vitro with excess of UDP-glucuronic acid by UDP-glucuronyltransferase from livers of young and adult rabbits was studied. 2. The development of UDP-glucuronyltransferase for the two substrates followed a markedly different pattern during maturation of young rabbits, p-nitrophenol-conjugation ability being much higher at birth than that for bilirubin. 3. Mg(2+) increased bilirubin conjugation, but inhibited p-nitrophenyl glucuronide formation. 4. p-Nitrophenol acted as a potent non-competitive inhibitor for bilirubin conjugation but bilirubin did not affect p-nitrophenyl glucuronidation. 5. The enzyme for bilirubin conjugation was inactivated at pH9 during treatment with snake venom, whereas in the same preparation the activity of the corresponding enzyme for p-nitrophenol was enhanced. In addition, some solubilization of the latter enzyme could be achieved by this method. 6. The possibility of the existence of more than one enzyme system for the formation of O-glucuronides is discussed.  相似文献   

5.
Studies of mammalian glucoside conjugation   总被引:3,自引:2,他引:1  
The mammalian glucoside-conjugation pathway was studied by using p-nitrophenol as the model substrate and mouse liver microsomal preparations as the source of enzyme. The microsomal preparations supplemented with UDP-glucose glucosylated p-nitrophenol; p-nitrophenyl glucoside was identified by chromatography in six solvent systems. The unsolubilized glucosyltransferase of fresh microsomal preparations did not follow the usual Michaelis-Menten kinetics and was easily inhibited by many steroids. All the steroids tested inhibited glucosylation of p-nitrophenol to a greater degree than glucuronidation of p-nitrophenol when assayed in the same microsomal preparations. The steroids inhibited glucosylation with the following decreasing effectiveness: pregnan-3alpha-ol-20beta-one (3alpha-hydroxypregnan-20-beta-one)>oestradiol-17beta 3-methyl ether>oestradiol-17beta>oestriol>pregnane-3alpha,20beta-diol>oestrone. Pregnan-3alpha-ol-20beta-one, pregnane-3alpha,20beta-diol and oestrone had negligible effect on glucuronidation.  相似文献   

6.
P L Gigon  M H Bickel 《Enzyme》1979,24(4):230-238
Microsomal fraction contains the whole of hepatic UDP-glucuronyltransferase as well as part of beta-glucuronidase. The activities of the two enzymes were assayed under identical conditions using untreated male rat liver microsomes at pH 7.5. In a 30-min incubation with p-nitrophenol and UPD-glucuronic acid, a net glucuronide formation of 0.010 mumol.min-1.g.liver-1 was measured. In the presence of saccharolactone at concentrations selectively blocking beta-glucuronidase, the glucuronidation rate was 0.015 mumol.min-1.g.liver-1. Using the kinetic parameters of beta-glucuronidase (Km = 0.06 mmol/l p-nitrophenylglucuronide, Vm = 0.075 mumol pNP formed.h-1.g.liver-1) determined in the absence of UDP-glucuronic acid, to correct for the beta-glucuronidase's interference on the glucuronidation process, a glucuronide formation of 0.011 mumol.min-1.g.liver-1 was calculated.  相似文献   

7.
Phospholipid depletion substantially inhibited the maximum demonstrable activities of the forward (glucuronidation) and reverse reactions of UDP-glucuronyltransferase towards p-nitrophenol in guinea-pig liver microsomal preparations. Dispersions of liver phospholipids restored activity, whereas non-phospholipid amphipaths failed to do so effectively. These results suggest that the system is probably phospholipid-dependent rather than conformationally constrained by phospholipids.  相似文献   

8.
G F Rush  J B Hook 《Life sciences》1984,35(2):145-153
Rat renal microsomes catalyzed the glucuronidation of l-naphthol, 4-methylumbelliferone and p-nitrophenol, whereas morphine and testosterone conjugation were not detected. In contrast, all five substrates were conjugated by hepatic microsomes; the activity was typically 5-10 times greater than with renal microsomes. Renal microsomal UDP-glucuronyltransferase toward l-naphthol was fully activated (six-fold) by 0.03% deoxycholate while the hepatic enzyme was fully activated (eight-fold) by 0.05% deoxycholate. Full activation of hepatic UDP-glucuronyltransferase occurred when microsomes had been preincubated at 0 C with deoxycholate for 20 min. This effect of preincubation was not observed with renal microsomes. The presence of 0.25M sucrose in the buffers during renal microsomal preparation resulted in a two-fold greater rate of l-naphthol conjugation in both unactivated and activated microsomes than renal microsomes prepared in phosphate buffers alone. Preparation of hepatic microsomes with or without 0.25M sucrose had no effect on UDP-glucuronyltransferase activity. Unactivated (-deoxycholate) renal enzyme was activated when incubations were done at a low pH (5.7), whereas fully activated (0.03% deoxycholate) renal microsomal UDP-glucuronyltransferase displayed a pH optimum at 6.5. Renal microsomal UDP-glucuronyltransferase activity toward l-naphthol, p-nitrophenol and 4-methylumbelliferone was induced by pretreatment of rats with beta-naphthoflavone and trans-stilbene oxide but not by phenobarbital or 3-methylcholanthrene. These data demonstrate that renal UDP-glucuronyltransferases are different from the hepatic enzymes with regard to biochemical properties, substrate specificity and in response to chemical inducers of xenobiotic metabolism.  相似文献   

9.
UDP-glucuronyltransferase activity of neonatal-chick liver or phenobarbital-treated chick-embryo liver catalysed the glucuronidation of 1-naphthol, 4-nitrophenol and 2-aminophenol. Only low transferase activity towards testosterone was detected, and activity towards bilirubin was not detectable. Liver microsomal transferase activity towards the three phenols was increased approx. 20-50-fold by phenobarbital treatment of chick embryos or by transfer of liver cells into tissue culture. A single form of UDP-glucuronyltransferase, which appears to catalyse the glucuronidation of these three phenols, was purified to near homogeneity from phenobarbital-treated chick-embryo liver microsomal fraction for the first time. The use of this purified enzyme as a standard protein facilitated the identification of this protein in chick-embryo liver microsomal fraction. Further, the accumulation of this microsomal protein was observed following phenobarbital treatment of chick embryos and during tissue culture of chick-embryo liver cells. The value of this model system for the study of the induction of UDP-glucuronyltransferase by drugs and hormones is discussed.  相似文献   

10.
A lipophilic hollow fiber membrane preparation was used for the enzymatic glucuronidation of lipophilic aromatic compounds. A crude solubilized microsomal enzyme preparation was circulated on the external side of the lipophilic membrane while the phenol containing buffer solution was circulated through the internal side of the hollow fiber membrane. Phenols, which accumulate in and penetrate the lipophilic membrane, were converted by UDP-glucuronyltransferase to the corresponding glucuronides. During this process the lipophilic compounds are converted to hydrophilic substances, which are not able to rediffuse through the lipophilic membrane into the donor side of the hollow fiber module. The produced glucuronide is separated by means of a coupled dialysis with a module of hydrophilic surface (cellulose acetate), while the enzyme protein is retained.On the stripping side of the dialysing module the glucuronide can be separated by solid phase extraction (Lichroprep RP-18) while a continuous substitution of cofactor into this compartment is possible. UDPGA follows its own concentration gradient and migrates into the enzymatic mixture, where it is utilized. This new technique using hollow fiber modules offers completely new possibilities for long-term high-capacity, highly specific glucuronidation of phenolic compounds. Fields of application are not only the economical production of special glucuronides, but also the specific elimination of phenols from waste fluids or from serum and blood of patients.For the production of glucuronides by this technique the use of highly purified enzymes is not essential. Cheap crude enzyme preparations are quite adequate for an optimal reaction. Using a crude enzyme preparation with a specific batch activity of 13 nMol/min per mg of protein, the activity in the reactor system was observed to be 4.6 nMol/min of 2-naphtol glucuronide formed per mg of protein. This corresponds to 3.6 nMol/h of product formed per mg of protein per cm2 of hollow fiber surface.Using a membrane surface of 0.5 m2 the production of 18 mMol of glucuronide per h and mg protein can be achieved.  相似文献   

11.
Treatment of microsomes with EDTA abolishes the stimulation of glucuronidation produced by UDP-N-acetylglucosamine. Addition of divalent metal ions to EDTA-treated microsomes restores the sensitivity of UDP-glucuronyltransferase to UDP-N-acetylglucosamine. Regulation of the activity of this enzyme by UDP-N-acetylglucosamine depends, therefore, on the presence of divalent metal ions. In addition, divalent metals increase the rate of glucuronidation of p-nitrophenol at Vmax. The data indicate that metals are essential for the efficient function of UDP-glucuronyltransferase.  相似文献   

12.
The properties of the UDP-glucuronyltransferase(s) of guinea-pig liver that catalyse the synthesis of steroid glucuronides were examined. There are many similarities between apparently different substrate-specific forms of these enzymes in that all are activated by bivalent metal ions, and all contain at least 2 thiol groups important for enzyme activity. On the other hand, there are significant differences between the enzymes conjugating steroids and those conjugating non-steroids. Only the latter are activated by UDP-N-acetylglucosamine, which enhances their relatively poor affinity for UDP-glucuronic acid. The steroid-conjugating forms of UDP-glucuronyltransferase are not activated by UDP-N-acetylglucosamine and have relatively high apparent affinities for UDP-glucuronic acid. The rate of glucuronidation of testosterone was inhibited by treatment with phospholipase A. Treatment with cholate or Triton X-100 did not enhance the rates of glucuronidation of any steroid tested. The data indicate several similarities between different forms of UDP-glucuronyltransferase, suggesting that there is a large family of related proteins. At the same time there are important differences in the parameters that modulate the rates of different glucuronidation reactions.  相似文献   

13.
Mano N  Nishimura K  Narui T  Ikegawa S  Goto J 《Steroids》2002,67(3-4):257-262
Recent studies have suggested that bile acid acyl glucuronides form covalently bound protein adducts which may cause hypersensitivity reactions and increased morbidity in patients. Although the preferential biosynthesis of the acyl glucuronides has been known, the characterization of hepatic bile acid acyl glucuronosyltransferase has not yet been clearly elucidated. We have investigated the substrate specificity of the hepatic bile acid acyl glucuronosyltransferase using five common bile acids as substrates. The glucuronidation rate was dependent on the number of the hydroxy group on the steroid nucleus and mono-hydroxylated lithocholic acid, the more lipophilic common bile acid, was most effectively metabolized into its acyl glucuronide. The tri-hydroxylated cholic acid, the more water-soluble common bile acid, barely transformed into its glucuronide. Results showed decreasing of the initial velocity of the acyl glucuronidation with increasing of the concentration of substrate, lithocholic acid, owing to the substrate inhibition of the hepatic bile acid acyl glucuronosyltransferase. The substrate analogues, glycine and taurine conjugated bile acids, which exist in the body fluids in high concentrations, also inhibited the enzyme's activity. In addition, enzymatic reaction products, bile acid acyl glucuronides, also inhibited the activity. These inhibitory mechanisms may be responsible for the low concentration of bile acid acyl glucuronides in urine and may be an important detoxification system in the body.  相似文献   

14.
Kinetic constants for the glucuronidation of hyodeoxycholic acid in man were determined using microsomal preparations of liver, kidney and small bowel. The affinity of hyodeoxycholic acid for the microsomal hepatic and extrahepatic enzymes was in the same range as previously observed for the monohydroxy bile acid lithocholic acid and about 3-14-times the affinity for the dihydroxy bile acids chenodeoxycholic, deoxycholic and ursodeoxycholic acids. The Vmax values for glucuronidation of hyodeoxycholic acid with hepatic microsomes were 10-30-times higher and with kidney microsomes 50-110-times higher than for the bile acids lacking a 6 alpha-hydroxy group. The site of glucuronidation was determined by gas chromatographic-mass spectrometric analysis of derivatives of products formed after periodate and chromic acid oxidation. Hyodeoxycholic acid glucuronides synthesized with microsomal preparations from the three organs were all found to be conjugated at the 6 alpha position. This has previously been shown to be the site of glucuronidation of endogenous hyodeoxycholic acid glucuronide excreted in urine.  相似文献   

15.
1. The purification to homogeneity of stable highly active preparations of UDP-glucuronyltransferase from liver of phenobarbital-treated rats is briefly described. 2. A single polypeptide was visible after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, of mol.wt.57000. 3. Antiserum raised against the pure enzyme produces a single sharp precipitin line after Ouchterlony double-diffusion analysis. 4. The pure UDP-glucuronyltransferase isolated from livers of untreated and phenobarbital-pretreated rats appears to be the same enzyme. 5. The Km (UDP-glucuronic acid) of the pure enzyme is 5.4 mM. 6. The activity of the pure enzyme towards 2-aminophenol can still be activated 2-3-fold by diethylnitrosamine. 7. UDP-glucose and UDP-galacturonic acid are not substrates for the purified enzyme. 8. The final preparation catalysed the glucuronidation of 4-nitrophenol, 1-naphthol, 2-aminophenol, morphine and 2-aminobenzoate. 9. Activities towards 4-nitrophenol, 1-naphthol and 2-aminophenol were all copurified. The proposed heterogeneity of UDP-glucuronyltransferase is discussed.  相似文献   

16.
1. Antiserum was raised against purified Wistar-rat liver UDP-glucuronyltransferase. 2. UDP-glucuronyltransferase activities towards 4-nitrophenol, bilirubin, 1-naphthol and morphine were co-immunoprecipitated from solubilized Wistar-rat liver preparations. 3. UDP-glucuronyltransferase activities towards 1-naphthol, 2-aminophenol and 4-nitrophenol were precipitated from solubilized Gunn-rat liver preparations by this antiserum. 4. UDP-glucuronyltransferase activities towards 1-naphthol, 4-nitrophenol and bilirubin, from Wistar-rat liver, were slightly inhibited by antiserum, whereas 1-naphthol UDP-glucuronyltransferase activity from Gunn-rat livers was greatly inhibited. 5. Measurable Wistar-rat liver glucuronyltransferase activities in washed immunoprecipitates indicate that the enzyme(s) were not merely inhibited by antiserum. 6. Immunoglobulin G purified from this antiserum immunoprecipitated transferase activities towards 4-nitrophenol, bilirubin and 1-naphthol. 7. The washed immunoprecipitates from both rat strains, containing UDP-glucuronyltransferase activity, appear to be similar when analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 8. Radial-immunodiffusion studies suggest that a smaller amount of UDP-glucuronyltransferase protein is present in Gunn-rat liver than in Wistar-rat liver. 9. The significance of these results in relation to the genetic deficiency in the Gunn rat is discussed.  相似文献   

17.
UDPglucosyltransferase and its kinetic fluorimetric assay   总被引:1,自引:0,他引:1  
A rapid, kinetic assay for UDPglucosyltransferase has been developed using 1-naphthol as substrate. It is based on the continuous fluorimetric monitoring of 1-naphthyl glucoside formation during the reaction at physiological pH. The conjugate is easily distinguished from aglycone, since their fluorimetric properties differ. Glucoside biosynthesis in vitro by microsomal preparations isolated from the gut and fat body of cockroaches Periplaneta americana and Leucophaea maderae, and from the green gland and hepatopancreas of the crayfish Astacus astacus, has been demonstrated. The effects of buffer, pH, MgCl2, UDP-glucuronic acid, UDP-N-acetylglucosamine, sodium cholate and sonication on the enzyme activity have been assessed. The kinetic parameters of 1-naphthol and UDP-glucose have also been determined.  相似文献   

18.
1. Several pathways of drug metabolizing enzymic activity were measured in hepatic fractions of the channel catfish and rat using model substrates. The pathways examined included the O-demethylation of p-nitroanisole, microsomal ester hydrolysis of procaine and glucuronidation of p-nitrophenol, and the cytosolic acetylation of sulfamethazine and sulfation of 2-naphthol. Catfish liver preparations were incubated at both 25 degrees C and 37 degrees C. 2. The oxidative metabolism of p-nitrophenol was only one-eighth that of the rat at 37 degrees C and one-twelfth that of the rat at 25 degrees C. 3. Procaine ester hydrolysis was negligible in catfish microsomal preparations. 4. At 37 degrees C, p-nitrophenol glucuronidation was equivalent in catfish and rat microsomes. 5. Catfish cytosolic preparations exhibited N-acetyltransferase and arylsulfotransferase nearly comparable to those of the rat. 6. Rates of glucuronidation and sulfation were higher at 37 degrees C than at 25 degrees C in hepatic fractions of catfish.  相似文献   

19.
The effect of dicoumarol on glucuronidation of 3-OH-benzo(a)pyrene (BP) appears to be due to inhibition of UDPglucuronosyltransferase (UDPGT) and not to an inhibited DT-diaphorase (NAD(P)H:quinone oxidoreductase); to date the only enzyme known to be inhibited by dicoumarol. This dicoumarol-sensitive form of UDPGT does not seem to be identical to the major form catalyzing the glucuronidation of p-nitrophenol or methylumbelliferone, nor to the isozyme involved in the formation of phenolphthalein glucuronides. These conclusions are based on the following observations: In solubilized microsomes, devoid of DT-diaphorase, a 3-OH-BP glucuronidation activity is found which is very similar to that observed in microsomes before passing through an azodicoumarol Sepharose 6B column that binds more than 98% of DT-diaphorase; in the eluate from this column the inhibition by dicoumarol of 3-OH-BP glucuronidation is the same as in microsomes containing DT-diaphorase; other coumarin derivatives, which are either modified or substituted in the methylene bridge between the two coumarin entities in dicoumarol, are potent inhibitors of DT-diaphorase but not of UDPGT; a concentration of 10(-6) M dicoumarol is sufficient to inhibit 3-OH-BP glucuronidation 50%. In contrast, to inhibit glucuronidation of p-nitrophenol or methylumbelliferone the concentration of dicoumarol must be raised to the substrate level: i.e., 10(-4) M. Phenolphthalein glucuronidation is almost unaffected even by this high concentration of dicoumarol. The present investigation also reveals that DT-diaphorase and NADPH-cytochrome P-450 reductase can both catalyze the reduction of BP-3,6-quinone for the formation of BP-3,6-quinol glucuronides. In the eluate from the azodicoumarol Sepharose 6B column, no NADH-supported glucuronidation of BP-3,6-quinone can be detected unless DT-diaphorase is added. However, NADPH-supported formation of BP-3,6-quinol glucuronides can still be observed. The rate of the latter reaction is sufficient enough to allow studies on the effect of dicoumarol on BP-3,6-quinone glucuronidation. These results show that glucuronidation of BP-3,6-quinols is also catalyzed by a dicoumarol-sensitive UDPGT. However, not only is the formation of BP-3,6-quinol monoglucuronides inhibited by dicoumarol, but the conversion of monoglucuronides to diglucuronides is inhibited as well. The former reaction is inhibited 50% by 3.5 X 10(-6) M dicoumarol (close to the I50 for 3-OH-BP glucuronidation), whereas 10 times less dicoumarol (2 X 10(-7) M) is sufficient for 50% inhibition of the latter reaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Steroid glucuronides: Human circulatory levels and formation by LNCaP cells   总被引:3,自引:0,他引:3  
We studied the relationship between circulating androsterone glucuronide, androstane-3,17β-diol glucuronide and androstane-3β,17β-diol glucuronide concentrations and adrenal as well as testicular C-19 steroids in men. Among the three 5-reduced steroid glucuronides, androsterone glucuronide is the predominant C-19 steroid measured in plasma and its levels are markedly elevated compared to those of the non-conjugated steroid. The marked rise in testosterone during puberty was strongly correlated with the increase in both androsterone glucuronide and androstane-3,17β-diol glucuronide, thus suggesting that testicular C-19 steroids are the main precursors of the steroid glucuronides. We also found that the presence of testicular androgen in plasma contributes to approx. 70% of plasma androsterone glucuronide and androstane-3,17β-diol glucuronide. Our data suggest that the adrenal C-19 steroids remaining in circulation after castration in men are converted into potent androgen which are then glucuronidated by UDP-glucuronyltransferase. We also demonstrated that the human prostate cell line LNCaP is capable of converting to a large extent androstenedione into androsterone glucuronide. Our data further confirm that glucuronidation is a major pathway of steroid metabolism in steroid target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号