首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The green euryhaline flagellate Chlamydomonas pulsatilla Wollenweber, isolated from a coastal marine environment, was grown exponentially over the salinity range of 10 to 200% artificial seawater (ASW). The cellular volume and aqueous space of the alga, measured by [14C] mannitol and 3H2O tracer analyses of centrifuged cell pellets, ranged between 2.3 and 3.1 picoliters and between 1.5 and 2.1 picoliters, respectively. The nonaqueous space determined in those analyses (28-35%) was consistent with the cell composition of the alga. The glycerol content of the alga increased almost linearly with increasing salinity; its contribution to intracellular osmolality at 200% ASW was about 57%. The contribution of amino acids and soluble carbohydrates to the cell osmotic balance was small. Intracellular ion concentrations determined by analyzing centrifuged cell pellets of known [14C]mannitol space by atomic absorption spectrophotometry, and by neutron activation analyses of washed cells were similar. At 10% ASW, potassium and magnesium were the major cations, and chloride and phosphate were the major anions. The sodium and chloride content of the alga increased with increasing salinity; at 200% ASW the intracellular concentration of both sodium and chloride was about 400 millimolar. The intracellular osmolality (πint) matched closely the external osmolality (πext) over the entire salinity range except at 10% ASW where πint exceeded πext by 120 to 270 milliosmoles per kilogram H2O.  相似文献   

2.
D.E. Pegg  M. Gallant 《Cryobiology》1977,14(5):568-574
Rabbit kidneys were perfused with 50 ml of various solutions at 4 °C and then stored in the same solution at 4 °C for 24 hr. The solutions studied were as follows: WF1 was a balanced electrolyte solution resembling extracellular fluid; in WF2, sufficient glucose was added to raise the osmolality to 400 mosmol/kg; in WF3, one half (70 mmol) of the NaCl was omitted, but in this and in all subsequent solutions the total osmolality was maintained at 400 mosmol/kg by the inclusion of an appropriate amount of glucose; in WF4, 70 meq of Na+ was replaced by K+, in WF5, 70 meq of Na+ was replaced by Mg2+.After storage, cortical slices were cut from each kidney, and the extracellular space was measured with 51Cr-EDTA, water content by drying to constant weight, and total Na+ and K+ by flame photometry. Intracellular Na+ and K+ concentrations were calculated.It was found that the water content of all the perfused kidneys was increased but was lowest when the osmolality had been raised to 400 mosmol/kg with glucose, and the ionic strength was normal; the kidneys perfused with WF5 had the lowest water content. Gained water was generally distributed equally between the intracellular and the extracellular space, but cell swelling was prevented by the WF5 solution. All kidneys gained Na+ and all except those perfused with WF4 (the high-K+ solution) lost K+, but the loss was least with WF5.Overall, the changes during storage were least in the kidneys perfused with the highosmolality, high-Mg2+ solution, WF5. It is suggested that this solution may be useful as a washout fluid for short-term renal preservation.  相似文献   

3.
Abstract Methods were developed for measuring water content of the free space of suspension-cultured tobacco cells using 3H- or 14C-sorbitol. Sorbitol was not taken up by cells in significant quantities over the 3 min taken to label free space. Free space accounted for 50–60% of the water content of cell pellets irrespective of whether 3H- or 14-C-sorbitol was used. 14C-inulin labelled 13.5% less of the water in cell pellets than 3H-sorbitol, probably due to inadequate penetration by inulin into the free space in the cell wall matrix and within clumps of cells. Measurement of free space is necessary for measuring growth on a fresh or dry weight basis, solute concentrations and parameters of water relations of cells. Techniques for making these measurements on tobacco cells were also developed in this study. Solutes were measured after extraction from cells by expressing sap or by boiling cells in ethanol. Similar solute concentrations were found using both methods of extraction. By expressing sap from cells grown in culture medium with an osmotic pressure of 0.24 MPa, the cells were found to have an internal osmotic pressure of 0.70 MPa. Glucose, fructose, sucrose, amino acids and K+ accounted for 60% of this osmotic pressure. Elastic moduli were estimated using the Boyle-Van't Hoff relationship after suspending cells in solutions with different osmotic pressures and assessing their water content or internal osmotic pressure. For two different lines of tobacco cells, elastic modulus varied between 1 MPa and 5.4 MPa at turgor pressures of 0.15–0.52 MPa (line 1) and between 0.2 MPa and 4.2 MPa at turgor pressures of 0.04–0.26 MPa (line 2).  相似文献   

4.
Gabriele Orlich  Ewald Komor 《Planta》1992,187(4):460-474
Ricinus communis cv. Carmencita seedlings with their cotyledons incubated in sucrose solution and their hypocotyls cut to induce exudation of phloem sap, constitute a system of sucrose fluxes into and out of the cotyledons. This system was characterized with respect to quasi-steady-state conditions of sucrose uptake and export and then used to investigate the pathways of sucrose during phloem loading. The redistribution of 14C-labelled internal sucrose between the three compartments, cotyledons (mesophyll), exudate (sieve tubes) and incubation medium (cell-wall space), was measured in the presence or absence of external nonlabelled sucrose. It was found that mesophyll-derived labelled and external sucrose compete at uptake sites in the apoplasm. On the basis of the specific radioactivity of sucrose which reflects the proportionate intermixture of mesophyll-derived and external sucrose in the three compartments, it was determined that about 50% of the sucrose exported is loaded directly from the apoplasm, while the other half takes the route via the mesophyll. It was confirmed that mesophyll-derived sucrose is released into the apoplasm, so that the existence of an indirect apoplasmic loading pathway is established. Calculations depending on the concentration gradients of labelled and non-labelled sucrose in the cell-wall space are presented to quantify tentatively the proportions of direct and indirect apoplasmic as well as symplasmic loading.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137). We thank Walter Köckenberger and Ernst Steudle (Bayreuth, FRG) for discussions on the water flow in the exuding Ricinus seedling, and Dietrich Samoray (Bayreuth, FRG) for the conceptual discussions throughout this work.  相似文献   

5.
  • 1.1. Flounders transferred abruptly from sea to fresh water displayed a gradual decrease in plasma osmolality for 5–6 days (10–15 mOsm daily). When returned to sea water the osmolality increased to the original level within 1 day.
  • 2.2. Heart ventricle cell water content remained unchanged during the acclimations, except for a temporary 1.4% reduction within the first 4 hr of sea water acclimation.
  • 3.3. During acclimation to sea water intracellular K+ increased rapidly in parallel with plasma osmolality. During fresh water acclimation, however, cellular K+ decreased rapidly in the first day only, whereas plasma osmolality decreased further.
  • 4.4. Cellular taurine remained unchanged during the initial 4 days of fresh water acclimation and then declined 32% within the next 3 days. Upon retransfer to sea water, cellular taurine increased gradually to its original level in the course of 7 days.
  相似文献   

6.
7.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

8.
In an attempt to measure gastric emptying of carbohydrate solutions after exercise, we used the 13C acetate breath test to differentiate the gastric emptying of three approximately isoenergetic carbohydrate solutions (i.e. glucose, glucose polymer and sucrose) from each other and from water. On four separate occasions, six post-absorptive subjects walked on an inclined treadmill at 70% maximum oxygen uptake for 1 h and were then given 330 ml of one of the solutions in which 150 mg of sodium 1-[13C] acetate had been dissolved. Breath samples were collected at regular (2–30 min) intervals over the next 3.5 h for analysis of expired 13CO2 by isotope ratio mass spectrometry. When water was given, all subjects reached peak breath enrichment after 30 min, and had a mean (SE) gastric emptying time of 33.2 (1.6) min. Peak breath enrichment occurred later for sucrose and glucose polymer at 54.3 (3.1) min and 59.0 (2.1) min respectively (P < 0.01), and for glucose this was even later, at 62.3 (1.0) min (P < 0.05). Calculated gastric emptying times for sucrose and glucose polymer were almost identical [66.5 (2.5) and 69.8 (2.9) min respectively], whereas that for glucose was significantly slower [76.8 (3.2) min; P < 0.02], probably reflecting the effects of increased osmolality. The gastric emptying of all carbohydrates were significantly longer than for water (P < 0.01). These results show that in the post-exercise state the 13C acetate breath test can be used to differentiate the gastric emptying rates of water and carbohydrate solutions of different properties.  相似文献   

9.
We employed chlorophyll a fluorometry in order to measure the evolution of turgor threshold (intracellular osmolality) during the adaptation of two genetic transformants of the freshwater cyanobacterium Synechococcus sp. PCC7942 to unfavorable external salinity: PAMCOD cells which oxidize imported choline and accumulate approx. 0.06–0.08 M glycine betaine; and PAM cells which do not oxidize choline [Deshnium et al. (1995a) Plant Mol Biol 29: 897–909]. Turgor thresholds increased linearly (a) with the NaCl concentration in the culture, and (b) with the molar sucrose/chlorophyll a ratio in the cell. PAMCOD cells could proliferate in culture medium containing 0.4 M NaCl (external osmolality, 0.815 Osm kg−1), after a lag period, during which intracellular sucrose rose to 10 mol (mol Chl a)−1, or more, and turgor threshold (cytoplasmic osmolality) exceeded 1 Osm kg−1. At comparative conditions, PAM cells accumulated approx. half as much sucrose, and attained approx. half as high turgor thresholds as the PAMCOD cells, but they did not proliferate. These results indicate that glycine betaine improved the salinity tolerance of the PAMCOD cells synergistically, by means of two effects that implicate sucrose, the main organic osmolyte of Synechocccus: enhancement of sucrose biosynthesis, and/or alleviation of sucrose toxicity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Jaleh Daie 《Planta》1987,171(4):474-482
The uptake of different sugars was studied in segments of isolated phloem from petioles of celery (Apium graveolens L.) in order to determine the kinetics and specificity of phloem loading in this highly uniform conductive tissue. The uptake kinetics of sucrose and the sugar alcohol, mannitol, which are both phloem-translocated, indicated presence of a single saturable system, while uptake of non-phloem sugars (glucose and 3-O-methylglucose) exhibited biphasic kinetics with lower uptake rates than those for sucrose and mannitol. The presence of unlabeled mannitol, 3-O-methylglucose and maltose in the incubation solution did not cause inhibition of labeled-sucrose uptake, indicating high carrier specificity and lack of sucrose hydrolysis in vivo. The pH optimum for sucrose uptake was 5–6. Furthermore, a rapid and transient alkalinization of the external media by sucrose indicated a sugar/H+-cotransport mechanism. Dual-labeling experiments showed that sucrose influx continued at a constant rate (V max=15 mol·h-1·(g FW)-1), whereas sucrose efflux was low and insensitive to external concentration. Therefore, the saturable uptake kinetics for sucrose did not appear to be the result of an equilibrium between rates of sucrose influx and efflux.Abbreviations 3-OMG 3-O-methylglucose - PCMBS p-chloromercuribenzene sulfonate - SE-CC sieve element-companion cell - VB vascular bundle  相似文献   

11.
An isothermal ice recrystallization behavior in trehalose solution was investigated. The isothermal recrystallization rate constants of ice crystals in trehalose solution were obtained at ?5 °C, ?7 °C, and ?10 °C. Then the results were compared to those of a sucrose solution used as a control sample. Simultaneous estimation of water mobility in the freeze-concentrated matrix was conducted by 1H spin–spin relaxation time T2 to investigate mechanisms causing the different ice crystal recrystallization behaviors of sucrose and trehalose. At lower temperatures, lower recrystallization rates were obtained for both trehalose and sucrose solutions. The ice crystallization rate constants in trahalose solution tended to be smaller than those in sucrose solution at the same temperature. Although different ice contents (less than 3.6%) were observed between trehalose and sucrose solutions at the same temperature, the recrystallization behaviors of ice crystals were not markedly different. The 1H spin–spin relaxation time T2 of water components in a freeze-concentrated matrix for trehalose solution was shorter than in a sucrose solution at the same temperature. Results show that the water mobility of trehalose solutions in freeze-concentrated matrix was less than that of sucrose solutions, which was suggested as the reason for retarded ice crystal growth in a trehalose solution. Results of this study suggest that the replacement of sucrose with trehalose will not negatively affect deterioration caused by ice crystal recrystallization in frozen foods and cryobiological materials.  相似文献   

12.
Equilibration of ions and water with a charged gel does not follow the simple equations of the classical Gibbs-Donnan membrane equilibrium. Partition of ions between the gel and the external solution show specific effects, which require that activity coefficients are different in the two compartments. Highly hydrated ions, such as Na+ and H+ are accumulated into the gel water, whereas less highly hydrated ions, such as K+ and NH4+ accumulate in the external water. This selectivity is the obverse of that found for gels containing low-density, expanded water. Water in a charged gel equilibrated with solutions of MgCl2 was found to be more dense than bulk water at the same temperature. It is proposed that gels imbibe water to maximize the entropy of the system. Ions and water then equilibrate under those constraints. The chemical potential of water in the two compartments equalizes by an increase in density in the compartment of higher osmolality (the charged gel) and a decrease in density in the compartment of lower osmolality (the external solution). Electrolytes equilibrate so that macroscopic electroneutrality is conserved, and the chemical potential of an electrolyte is the same in each compartment. Because activity coefficients are different in the two compartments this results in asymmetric distributions of ions.Because real gels usually contain both charged and hydrophobic regions of surface, populations of water molecules of different density coexist even in very small pores. This accounts for the common failure to detect this phenomenon experimentally.  相似文献   

13.
Chondrocytes in cartilage are embedded in a matrix containing a high concentration of proteoglycans and hence of fixed negative charges. Their extracellular ionic environment is thus different from that of most cells, with extracellular Na+ being 250–350 mM and extracellular osmolality 350–450 mOsm. When chondrocytes are isolated from the matrix and incubated in standard culture medium (DMEM; osmolality 250–280 mOsm), their extracellular environment changes sharply. We incubated isolated bovine articular chondrocytes and cartilage slices in DMEM whose osmolity was altered over the range 250–450 mOsm by Na+ or sucrose addition. 35S-sulphate and 3H-proline incorporation rates were at a maximum when the extracellular osmolality was 350–400 mOsm for both freshly isolated chondrocytes and for chondrocytes in cartilage. The incorporation rate per cell of isolated chondrocytes was only 10% that of chondrocytes in situ both 4 and 24 hours after isolation. For freshly isolated chondrocytes, the rate increased 30–50% in DMEM to which NaCl or sucrose had been added to the increase osmolality. In chondrocytes incubated overnight in DMEM, the rate was greatest in DMEM of normal osmolality and fell from the maximum in proportion to the change in osmolality. The effects of surcrose addition on incorporation rates were similar but not identical to those of Na+ addition. Changes in cell volume might be linked to changes in synthesis rates since the cell volume of chondrocytes (measured by Coulter-counter) increased 30–40% when the cells are removed from their in situ environment into DMEM. Synthesis rates can thus be partly regulated by changes in extracellular osmolality, which in cartilage is controlled by proteoglycan concentration. This provides a mechanism by which the chondrocytes can rapidly respond to changes in extracellular matrix composition. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Reaumuria vermiculata (L.), a perennial dwarf shrub in the family of Tamaricaceae, is a salt-secreting xero-halophyte found widely in arid areas of Tunisia. In the present study, physiological attributes of R. vermiculata were investigated under salt stress. Four-month-old plants were subjected to various salinity levels (0, 100, 200, 300, 400 or 600 mM NaCl) for 30 days under greenhouse conditions. Results showed that plants grew optimally when treated with standard nutrient solution without NaCl supply. However, increasing osmolality of nutrient solutions caused a significant reduction in biomass production and relative growth rate. This reduction was more pronounced in roots than in shoots. In addition, this species was able to maintain its shoot water content at 30% of the control even when subjected to the highest salt level, whereas root water content seemed to be unaffected by salt. Shoot water potential declined significantly as osmotic potential of watering solutions was lowered and the more negative values were reached at 600 mM NaCl (−3.4 MPa). Concentrations of Na+ and Cl in the shoots of R. vermiculata were markedly increased with increasing osmolality of nutrient solutions, whereas concentration of K+ was not affected by NaCl supply. Salt excretion is an efficient mechanism of Na+ exclusion from the shoots of this species exhibiting high K+/Na+ selectivity ratio over a wide range of NaCl salinity. Proline accumulation in shoots was significantly increased with increase in salt level and may play a role in osmoregulation.  相似文献   

15.
  • 1.1. Rainbow trout were acclimated to salt water (1.5, 2.0 or 3.0%, which means 40, 60 or 85% concentrated sea-water) and the electrolyte, glucose and cortisol concentrations of the plasma as well as the extra- and intracellular muscle space, the muscle electrolyte concentrations and the ATPase activity were analysed.
  • 2.2. Plasma osmolality, Na+, Ca2+ and Mg2+ concentrations of the plasma had a maximum at 24 hr after the start of acclimation when acclimated to 3.0% salt water. Plasma osmolality, Na+ and Mg2+ concentrations were significantly higher during the whole acclimation time when exposed to 3.0% salt water.
  • 3.3. Variations and regulations of ECS and ICS were clearly demonstrated. The intracellular electrolyte concentrations were also maximal at 24 hr.
  • 4.4. The plasma glucose level was just slightly elevated, but the cortisol level clearly indicated a stress response at 24 hr.
  • 5.5. The activity of gill Na-K-ATPase increased during the acclimation time.
  • 6.6. The regulatory processes in trout during acclimation to salt water are compared with those occurring in tilapia and carp.
  相似文献   

16.
Studies on protoplast isolation were carried out with mature pollen grains of Tulbaghia violacea Harv. (Liliaceae). Pollen grains drifted from surface sterilized crushed anthers were incubated either in a nonenzymatic solution composed of Nitsch medium and sucrose, or in the same solution supplemented with 1% cellulase Onozuka R-10 and 1% Macerozyme R-10. The process of protoplast release was studied as a function of pH and sucrose concentration of nonenzymatic and enzymatic solutions. For nonenzymatic isolation, the tested range of pH and sucrose concentration was from 3.3 to 13.1 and from 0.015 to 1.12 M (final solution osmolality from 200 to 1,300 mOs kg-1 H2O), respectively. In the former case, the release of protoplasts occurred only at nonphysiological pH (12.2 to 13.1) and could be observed after several seconds to 120 min, depending on pH and sucrose concentration of medium. Under enzymatic incubation, viable protoplasts were released more rapidly (3 to 35 min) and in more physiological conditions, the optimum being pH 5.8 and final medium osmolality 652 mOs kg-1 H2O. Speed, manner of protoplast release, number and quality of protoplasts were dependent on interactions of pH and sucrose concentration.  相似文献   

17.
Centrifugation of crude preparations of chromaffin granules on iso-osmotic continuous gradients of sucrose and metrizamide produce granule fractions of high purity without pelleting.These granules have a buoyant density of 1.123 at 300 mosM, which increases to 1.222 at 1800 mosM.Exchange of water for 2H2O greatly increases the density of the granules. An apparent water space for the granules can be calculated from the difference in density in 2H2O and water. The water space of 0.63 at 300 mosM diminishes as the osmolality of the suspension medium is increased, suggesting that the granule membrane is a good osmometer and that the core contains a large osmotically active water space.Other separation methods for chromaffin granules are discussed in terms of these results.  相似文献   

18.
The turgor-homeostat model of assimilate efflux from coats of developing seed of Phaseolus vulgaris L. was further characterised. The turgor pressure (P), the volumetric elastic modulus () and hydraulic conductivity (Lp) of the seed coat cells responsible for assimilate efflux and cotyledon storage parenchyma cells were determined with a pressure probe. In addition, turgor of the seed coat and cotyledons was estimated by measuring the osmolalities of symplastic and apoplastic fluids extracted by centrifugation. Osmolality of symplastic and apoplastic saps collected from the seed coat declined significantly over the period of seed development from a cotyledon water content of 80% to 50%. However, the difference in osmolalities of the apoplastic and symplastic saps remained relatively constant. For cotyledons, osmolality of the apoplastic sap exhibited a significant decline during seed development, while the osmolality of symplastic sap did not change significantly. Hence cotyledon P increased as the water content dropped from 80% to 50%. For both detached and attached empty seed coats, a small decrease (ca. 40mOsmol·kg–1) in the osmolality of the bathing solution, led to a rapid increase in P of cells involved in assimilate efflux (efflux cells) by about 0.07 MPa. Thereafter, cell P exhibited a rapid decline to the original value within some 20–30 min. When P of the efflux cells was reduced by increasing the osmolality of the bathing solution, P exhibited a comparable rate of recovery for attached empty seed coats but there was no P recovery to its original value in the case of detached seed coats. In contrast, the cotyledon storage parenchyma cells did not exhibit P regulation when the osmolality of the bathing solution was changed. The observations that the efflux cells of P. vulgaris seed coats can rapidly adjust their P homeostatically in response to small changes in apoplastic osmolality are consistent with the operation of a turgor-homeostat mechanism. The volumetric elastic modulus () of the seed coat efflux cells exhibited a mean value of 7.3±0.8 MPa at P=0.15 MPa and was found to be linearly dependent on cell P. The e of the cotyledon storage parenchyma cells was estimated to be 6.1±1.0 MPa at P=0.41 MPa. Hydraulic conductivity (Lp) of the seed coat cells and the cotyledon cells was (8.2±1.5) × 10–8m·s–1·MPa–1and (12.8±1.0) × 10–8 m·s–1·MPa–1, respectively. The relatively high , i.e., low elasticity, for the seed coat cell walls would ensure that small changes in water potential of the seed apoplast will be reflected in large changes in cell P. The high Lp values for both the seed coat and the cotyledon cells is consistent with the rapid changes in P in response to changes in water potential of the seed apoplast.Abbreviations LYCH Lucifer Yellow CH - volumetric elastic modulus - Lp hydraulic conductivity - P turgor pressure - osmotic pressure - t1/2 half-time for water exchange The investigation was supported by funds from the Australian Research Council. We are grateful to Louise Hetherington for competent technical assistance and to Kevin Stokes for raising the plant material.  相似文献   

19.
The apparent extracellular space in incubated slices of rat renal cortex, medulla and papilla has been measured using three differently sized marker molecules, mannitol, sucrose and inulin. Cellular volumes have been estimated by following the efflux of from equilibrated slices. Sucrose appears to be the most accurate extracellular marker in each of the regions examined, in that the sum of its volume of distribution plus cellular volume approximates most closely to the total slice fluid volume. Inulin has the same volume of distribution as sucrose in cortical slices, but under-penetrates medullary and papillary tissue. Mannitol overestimates the extracellular space in all three regions, although its larger volume of distribution, relative to that of sucrose, was not statistically significant in papillary slices. When cell volume and composition are estimated (a) using sucrose as extracellular marker and (b) making appropriate allowance for the presence of bound tissue electrolytes, it is found that cells in each region have low Na+ and high K+ concentrations and contents. When papillary slices are incubated in medium of very high osmolality (NaCl plus urea, 2000 mosmol/kg H2O) there is a moderate (approx. 23%) decrease in cell volume and an increase in cell fluid Na+ and Cl concentrations equal to approx. 50% of the increase in the extracellular concentrations. Cell K+ concentrations remain unchanged. The results show that cells in renal slices are able to maintain high K+-to-Na+ ratios when incubated in isosmotic (cortex) or moderately hyperosmotic media (medulla and papilla), and suggest that regulation of papillary cell volume following hyperosmotic shock can only partly be ascribed to uptake of extracellular electrolytes.  相似文献   

20.
If we apply water at one end of a Nitella cell, A, and place at the other end, B, a solution of a substance which does not penetrate, such as sucrose, water enters the cell at A, passes along inside the cell, and escapes at B. But if in place of sucrose we use a substance which penetrates such as ethyl alcohol the flow of water is lessened and this fact makes it possible to measure the amount of alcohol which enters. (An increase in the size of cells placed in solutions of alcohol does not necessarily indicate that the number of mols of alcohol entering is greater than the number of mols of water leaving the cell.) The permeability for water is more than 18 times as great as for ethyl alcohol. The behavior of the 2 substances was compared in the same individual cell with a driving force which at the start was the same for both substances. The number of mols entering per second per cm.2 of surface with a driving force of 1 atmosphere at 25°C. is 0.772 (10–6) for water and 0.042 (10–6) for ethyl alcohol. The experiments indicate that the non-aqueous substance at the surface of the protoplasm has a higher partition coefficient for water than for ethyl alcohol, although the protoplasmic surface is composed of materials not miscible with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号