首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compartmentation in plant metabolism   总被引:6,自引:0,他引:6  
Cell fractionation and immunohistochemical studies in the last 40 years have revealed the extensive compartmentation of plant metabolism. In recent years, new protein mass spectrometry and fluorescent-protein tagging technologies have accelerated the flow of information, especially for Arabidopsis thaliana, but the intracellular locations of the majority of proteins in the plant proteome are still not known. Prediction programs that search for targeting information within protein sequences can be applied to whole proteomes, but predictions from different programs often do not agree with each other or, indeed, with experimentally determined results. The compartmentation of most pathways of primary metabolism is generally covered in plant physiology textbooks, so the focus here is mainly on newly discovered metabolic pathways in plants or pathways that have recently been revised. Ultimately, all of the pathways of plant metabolism are interconnected, and a major challenge facing plant biochemists is to understand the regulation and control of metabolic networks. One of the best-characterized networks links sucrose synthesis in the cytosol with photosynthetic CO(2) fixation and starch synthesis in the chloroplasts. One of the key features of this network is how the transport of pathway intermediates and signal metabolites across the chloroplast envelope conveys information between the two compartments, influencing the regulation of several enzymes to co-ordinate fluxes through the different pathways. It is widely accepted that chloroplasts and mitochondria originated from prokaryotic endosymbionts, and that new transporters and regulatory networks evolved to integrate metabolism in these organelles with the rest of the cell. Curiously, the present-day locations of many metabolic pathways within the cell often do not reflect their evolutionary origin, and there is evidence of extensive shuffling of enzymes and whole pathways between compartments during the evolution of plants.  相似文献   

2.
Coenzymes are essential across all domains of life. B vitamins (B1‐thiamin, B2‐riboflavin, B3‐niacin, B5‐pantothenate, B6‐pyridoxine, B7‐biotin, and B12‐cobalamin) represent the largest class of coenzymes, which participate in a diverse set of reactions including C1‐rearrangements, DNA repair, electron transfer, and fatty acid synthesis. B vitamin structures range from simple to complex heterocycles, yet, despite this complexity, multiple lines of evidence exist for their ancient origins including abiotic synthesis under putative early Earth conditions and/or meteorite transport. Thus, some of these critical coenzymes likely preceded life on Earth. Some modern organisms can synthesize their own B vitamins de novo while others must either scavenge them from the environment or establish a symbiotic relationship with a B vitamin producer. B vitamin requirements are widespread in some of the most ancient metabolisms including all six carbon fixation pathways, sulfate reduction, sulfur disproportionation, methanogenesis, acetogenesis, and photosynthesis. Understanding modern metabolic B vitamin requirements is critical for understanding the evolutionary conditions of ancient metabolisms as well as the biogeochemical cycling of critical elements such as S, C, and O.  相似文献   

3.
ROS and redox signalling in the response of plants to abiotic stress   总被引:2,自引:0,他引:2  
The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.  相似文献   

4.
Alaynick WA 《Mitochondrion》2008,8(4):329-337
Lipid metabolism is a continuum from emulsification and uptake of lipids in the intestine to cellular uptake and transport to compartments such as mitochondria. Whether fats are shuttled into lipid droplets in adipose tissue or oxidized in mitochondria and peroxisomes depends on metabolic substrate availability, energy balance and endocrine signaling of the organism. Several members of the nuclear hormone receptor superfamily are lipid-sensing factors that affect all aspects of lipid metabolism. The physiologic actions of glandular hormones (e.g. thyroid, mineralocorticoid and glucocorticoid), vitamins (e.g. vitamins A and D) and reproductive hormones (e.g. progesterone, estrogen and testosterone) and their cognate receptors are well established. The peroxisome-proliferator activated receptors (PPARs) and liver X receptors (LXRs), acting in concert with PPARgamma Coactivator 1alpha (PGC-1alpha), have been shown to regulate insulin sensitivity and lipid handling. These receptors are the focus of intense pharmacologic studies to expand the armamentarium of small molecule ligands to treat diabetes and the metabolic syndrome (hypertension, insulin resistance, hyperglycemia, dyslipidemia and obesity). Recently, additional partners of PGC-1alpha have moved to the forefront of metabolic research, the estrogen-related receptors (ERRs). Although no endogenous ligands for these receptors have been identified, phenotypic analyses of knockout mouse models demonstrate an important role for these molecules in substrate sensing and handling as well as mitochondrial function.  相似文献   

5.
The B vitamins are water-soluble vitamins that are required as coenzymes for reactions essential for cellular function. This review focuses on the essential role of vitamins in maintaining the one-carbon transfer cycles. Folate and choline are believed to be central methyl donors required for mitochondrial protein and nucleic acid synthesis through their active forms, 5-methyltetrahydrofolate and betaine, respectively. Cobalamin (B12) may assist methyltetrahydrofolate in the synthesis of methionine, a cysteine source for glutathione biosynthesis. Pyridoxal, pyridoxine and pyridoxamine (B6) seem to be involved in the regeneration of tetrahydrofolate into the active methyl-bearing form and in glutathione biosynthesis from homocysteine. Other roles of these vitamins that are relevant to mitochondrial functions will also be discussed. However these roles for B vitamins in cell function are mostly theoretically based and still require verification at the cellular level. For instance it is still not known what B vitamins are depleted by xenobiotic toxins or which cellular targets, metabolic pathways or molecular toxic mechanisms are prevented by B vitamins. This review covers the current state of knowledge and suggests where this research field is heading so as to better understand the role vitamin Bs play in cellular function and intermediary metabolism as well as molecular, cellular and clinical consequences of vitamin deficiency. The current experimental and clinical evidence that supplementation alleviates deficiency symptoms as well as the effectiveness of vitamins as antioxidants will also be reviewed.  相似文献   

6.
Chloroplasts and mitochondria are traditionally considered to be autonomous organelles but they are not as independent as they were once thought to be. Mitochondrial metabolism, particularly the bioenergetic reactions of oxidative electron transport and phosphorylation, continue to be active in the light and are essential for sustaining photosynthetic carbon assimilation. The marked and mutually beneficial interaction between mitochondria and chloroplasts is intriguing. The key compartments within plant cells, including not only mitochondria and chloroplasts but also the peroxisomes and cytosol, appear to be in a delicate metabolic equilibrium. Disturbance of any of these compartments perturbs the metabolism of whole cell. Nevertheless, mitochondria appear to be the key players because they function during both photorespiration and dark respiration.  相似文献   

7.
Interaction between photosynthesis and respiration in illuminated leaves   总被引:3,自引:0,他引:3  
Plants are sessile organisms that often receive excessive amounts of light energy. This excess energy can be exported from the chloroplasts and dissipated by the mitochondrial respiratory chain. The inner membrane of plant mitochondria possesses unique non-phosphorylating pathways, involving alternative oxidase and type II NAD(P)H dehydrogenases. There are accumulating amounts of evidence showing that these energy-wasteful pathways are up-regulated under excess light conditions, suggesting that they play key roles in efficient photosynthesis. Based on recent advances in our understanding about the metabolic interaction between chloroplasts and mitochondria, we discuss the importance of the respiratory chain for stabilizing the photosynthetic system.  相似文献   

8.
The mitochondrion is the principle organelle in plant aerobic respiration, where the oxidation of organic acids to CO2 and H2O, combined with the coupling of electron transfer to O2 via the respiratory electron transport chain to adenosine triphosphate synthesis, takes place. Plant mitochondria also have important secondary roles, such as the synthesis of nucleotides, amino acids, lipids, prosthetic groups and vitamins. They also interact with chloroplasts and peroxisomes through a series of primary metabolic pathways. By using proteomic tools such as polyacrylamide gel-based and mass spectrometry-based methods, over 400 proteins, including 30 proteins from the tricarboxylic acid cycle, 78 proteins from the electron transport chain and more than 20 proteins from amino acid metabolism pathways have been identified in mitochondria of the model plant, Arabidopsis thaliana . Beyond the mitochondrial proteome, there is growing evidence for reversible protein phosphorylation and oxidative posttranslational modifications (PTMs) that could affect functions of individual plant mitochondrial proteins or protein complexes. This review will discuss the progress in defining the PTMs that have the potential to regulate plant mitochondrial functions, with references to studies in plants, yeast and mammalian mitochondria and the development of various proteomic and affinity purification methods to study them.  相似文献   

9.
Atamna H  Frey WH 《Mitochondrion》2007,7(5):297-310
Several studies have demonstrated aberrations in the Electron Transport Complexes (ETC) and Krebs (TCA) cycle in Alzheimer's disease (AD) brain. Optimal activity of these key metabolic pathways depends on several redox active centers and metabolites including heme, coenzyme Q, iron-sulfur, vitamins, minerals, and micronutrients. Disturbed heme metabolism leads to increased aberrations in the ETC (loss of complex IV), dimerization of APP, free radical production, markers of oxidative damage, and ultimately cell death all of which represent key cytopathologies in AD. The mechanism of mitochondrial dysfunction in AD is controversial. The observations that Abeta is found both in the cells and in the mitochondria and that Abeta binds with heme may provide clues to this mechanism. Mitochondrial Abeta may interfere with key metabolites or metabolic pathways in a manner that overwhelms the mitochondrial mechanisms of repair. Identifying the molecular mechanism for how Abeta interferes with mitochondria and that explains the established key cytopathologies in AD may also suggest molecular targets for therapeutic interventions. Below we review recent studies describing the possible role of Abeta in altered energy production through heme metabolism. We further discuss how protecting mitochondria could confer resistance to oxidative and environmental insults. Therapies targeted at protecting mitochondria may improve the clinical outcome of AD patients.  相似文献   

10.
In addition to efficient synthesis of ATP by oxidative phosphorylation, acquisition of the mitochondrial endosymbiont brought a whole range of new metabolic capabilities to the ancestral eukaryotic cell lineage such that the mitochondrion retains an important role in numerous anabolic and catabolic processes. While respiration dominates metabolism of the mitochondrion, this organelle is also important in the catabolism of amino acids and the provision of carbon skeletons for biosynthesis of a wide range of compounds including amino acids, vitamins, lipids, and tetrapyrroles. However, mitochondrial metabolism is best understood in the context of cellular metabolism as a whole; this is particularly true in auxotrophic organisms such as plants. For this reason understanding of the integration of mitochondrial metabolism with associated metabolic pathways in distinct cellular locations is of great importance. The examples of photorespiration, proline, cysteine, branched chain amino acid, ascorbate and folate metabolism all indicate that mitochondrial steps in these pathways are critical to their function and regulation. Moreover, the central metabolic position of the mitochondrion and its key roles in bioenergetics and redox regulation, additionally mean that it is ideally placed to act as a sensor of the biochemical status of the cell. When taken together these observations suggest that the myriad nonrespiratory functions of the mitochondria are of vast importance in the coordination of plant cellular metabolism and function.  相似文献   

11.
Effects of vitamins B, C, E, K and P, as well as coenzymes Q, on formation of final products of radiation-induced free-radical transformations of ethanol, ethylene glycol, alpha-methylglycoside and glucose in aqueous solutions were studied. Based on the obtained results, it can be concluded that there are substances among vitamins and coenzymes that effectively interact with alpha-hydroxyl-containing radicals. In the presence of these substances, recombination reactions of alpha-hydroxyalkyl radicals and fragmentation of alpha-hydroxy-beta-substituted organic radicals are suppressed. It has been established that the observed effects are due to the ability of the vitamins and coenzymes under study to either oxidize alpha-hydroxyl-containing radicals yielding the respective carbonyl compounds or reduce them into the initial molecules.  相似文献   

12.
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.  相似文献   

13.
A stoichiometric model of metabolism was developed to describe the balance of metabolic reactions during steady-state growth of Escherichia coli on glucose (or metabolic intermediates) and mineral salts. The model incorporates 153 reversible and 147 irreversible reactions and 289 metabolites from several metabolic data bases for the biosynthesis of the macromolecular precursors, coenzymes, and prosthetic groups necessary for synthesis of all cellular macromolecules. Correlations describing how the cellular composition changes with growth rate were developed from experimental data and were used to calculate the drain of precursors to macromolecules, coenzymes, and prosthetic groups from the metabolic network for the synthesis of those macromolecules at a specific growth rate. Energy requirements for macromolecular polymerization and proofreading, transport of metabolites, and maintenance of transmembrane gradients were included in the model rather than a lumped maintenance energy term. The underdetermined set of equations was solved using the Simplex algorithm, employing realistic objective functions and constraints; the drain of precursors, coenzymes, and prosthetic groups and the energy requirements for the synthesis of macromolecules served as the primary set of constraints. The model accurately predicted experimentally determined metabolic fluxes for aerobic growth on acetate or acetate plus glucose. In addition, the model predicted the genetic and metabolic regulation that must occur for growth under different conditions, such as the opening of the glyoxylate shunt during growth on acetate and the branching of the tricarboxylic acid cycle under anaerobic growth. Sensitivity analyses were performed to determine the flexibility of pathways and the effects of different rates and growth conditions on the distribution of fluxes. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 398-421, 1997.  相似文献   

14.
15.
The biologically and commercially important terpenoids are a large and diverse class of natural products that are targets of metabolic engineering. However, in the context of metabolic engineering, the otherwise well-documented spatial subcellular arrangement of metabolic enzyme complexes has been largely overlooked. To boost production of plant sesquiterpenes in yeast, we enhanced flux in the mevalonic acid pathway toward farnesyl diphosphate (FDP) accumulation, and evaluated the possibility of harnessing the mitochondria as an alternative to the cytosol for metabolic engineering. Overall, we achieved 8- and 20-fold improvement in the production of valencene and amorphadiene, respectively, in yeast co-engineered with a truncated and deregulated HMG1, mitochondrion-targeted heterologous FDP synthase and a mitochondrion-targeted sesquiterpene synthase, i.e. valencene or amorphadiene synthase. The prospect of harnessing different subcellular compartments opens new and intriguing possibilities for the metabolic engineering of pathways leading to valuable natural compounds.  相似文献   

16.
17.
Since the nineteenth century the importance of mitochondria in cellular physiology has been growing steadily. Not only the organelle harbors the main systems for ATP generation, but also buffers the redox potential in the cytosol and is one of the protagonists of the intrinsic pathway for apoptosis. In tumor cells, mitochondria went from being dysfunctional compartments to playing a supportive or perhaps even a triggering part in metastasis. This “Organelle In Focus” article discusses the classical metabolic events that occur in mitochondria and why these pathways could be essential for the onset of the malignant phenotype. Finally, we propose that the oxidative metabolism of tumor cells in conjunction with the inactivation of anoikis may have been coopted through a non-adaptive evolutionary process.  相似文献   

18.
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.  相似文献   

19.
The distribution of identical enzymatic activities between different subcellular compartments is a fundamental process of living cells. At present, the Saccharomyces cerevisiae aconitase enzyme has been detected only in mitochondria, where it functions in the tricarboxylic acid (TCA) cycle and is considered a mitochondrial matrix marker. We developed two strategies for physical and functional detection of aconitase in the yeast cytosol: 1) we fused the alpha peptide of the beta-galactosidase enzyme to aconitase and observed alpha complementation in the cytosol; and 2) we created an ACO1-URA3 hybrid gene, which allowed isolation of strains in which the hybrid protein is exclusively targeted to mitochondria. These strains display a specific phenotype consistent with glyoxylate shunt elimination. Together, our data indicate that yeast aconitase isoenzymes distribute between two distinct subcellular compartments and participate in two separate metabolic pathways; the glyoxylate shunt in the cytosol and the TCA cycle in mitochondria. We maintain that such dual distribution phenomena have a wider occurrence than recorded currently, the reason being that in certain cases there is a small fraction of one of the isoenzymes, in one of the locations, making its detection very difficult. We term this phenomenon of highly uneven isoenzyme distribution "eclipsed distribution."  相似文献   

20.
D A Roe 《Life sciences》1974,15(7):1219-1234
Drugs can increase nutrient requirements through various mechanisms and if these requirements are not met by dietary modification or provision of nutrient supplements, deficiency disease will result. Commoner nutritional effects of drugs consist in the insidious development of hypovitaminoses; other serious nutritional consequences of drug intake include growth impairment and, in the case of vitamin antagonists, poisoning through interference with metabolic processes dependent on the activity of vitamins or coenzymes. Interactions may exist between pharmacologic agents and nutrients with respect to their absorption, transport, metabolism and excretion. Single drugs can cause nutrient depletion by more than one mechanism and multiple drug regimens can deplete nutrient stores by a synergistic effect. Risks of drug-induced malnutrition with drugs increase with dose and duration of intake, marginal diets and co-existence of disease which increases requirements for the same nutrients that are affected by the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号