首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seidl BH  Ziegler A 《ZooKeys》2012,(176):73-85
The crustacean cuticle consists of a complex organic matrix and a mineral phase. The physical and chemical properties of the cuticle are corellated to the specific functions of cuticular elements, leading to a large variety in its structure and composition. Investigation of the structure-function relationship in crustacean cuticle requires sophisticated methodological tools for the analysis of different aspects of the cuticular architecture. In the present paper we report improved preparation methods that, in combination with various electron microscopic techniques, have led to new insights of cuticle structure and composition in the tergite cuticle of Porcellio scaber. We used thin sections of non-decalcified tergites and decalcified resin embedded material for transmission electron microscopy and scanning transmission electron microscopy. Etched sagittal planes of bulk tergite samples were analysed with field emission scanning electron microscopy. We have found a distinct distal region within the exocuticle that differs from the subjacent proximal exocuticle in the arrangement of fibres. Within this distal exocuticle chitin-protein fibrils assemble to fibres with diameters between 15 and 50 nm that are embedded in a mineral matrix. In the proximal exocuticle and the endocuticle fibrils do not assemble to fibres and are surrounded by mineral individually. Furthermore, we show that the pore canals are filled with mineral, and demonstrate that mild etching of polished sagittal cuticle surfaces reveals regions containing mineral of diverse solubility.  相似文献   

2.
The main mineral components of the isopod cuticle consists of crystalline magnesium calcite and amorphous calcium carbonate. During moulting isopods moult first the posterior and then the anterior half of the body. In terrestrial species calcium carbonate is subject to resorption, storage and recycling in order to retain significant fractions of the mineral during the moulting cycle. We used synchrotron X-ray powder diffraction, elemental analysis and Raman spectroscopy to quantify the ACC/calcite ratio, the mineral phase distribution and the composition within the anterior and posterior tergite cuticle during eight different stages of the moulting cycle of Porcellio scaber. The results show that most of the amorphous calcium carbonate (ACC) is resorbed from the cuticle, whereas calcite remains in the old cuticle and is shed during moulting. During premoult resorption of ACC from the posterior cuticle is accompanied by an increase within the anterior tergites, and mineralization of the new posterior cuticle by resorption of mineral from the anterior cuticle. This suggests that one reason for using ACC in cuticle mineralization is to facilitate resorption and recycling of cuticular calcium carbonate. Furthermore we show that ACC precedes the formation of calcite in distal layers of the tergite cuticle.  相似文献   

3.
The Structure and Calcification of the Crustacean Cuticle   总被引:4,自引:1,他引:3  
The integument of decapod crustaceans consists of an outer epicuticle,an exocuticle, an endocuticle and an inner membranous layerunderlain by the hypodermis. The outer three layers of the cuticleare calcified. The mineral is in the form of calcite crystalsand amorphous calcium carbonate. In the epicuticle, mineralis in the form of spherulitic calcite islands surrounded bythe lipid-protein matrix. In the exo- and endocuticles the calcitecrystal aggregates are interspersed with chitin-protein fiberswhich are organized in lamellae. In some species, the organizationof the mineral mirrors that of the organic fibers, but suchis not the case in certain cuticular regions in the xanthidcrabs. Thus, control of crystal organization is a complex phenomenonunrelated to the gross morphology of the matrix. Since the cuticle is periodically molted to allow for growth,this necessitates a bidirectional movement of calcium into thecuticle during postmolt and out during premolt resorption ofthe cuticle. In two species of crabs studied to date, thesemovements are accomplished by active transport effected by aCa-ATPase and Na/Ca exchange mechanism. The epi- and exocuticular layers of the new cuticle are elaboratedduring premolt but do not calcify until the old cuticle is shed.This phenomenon also occurs in vitro in cuticle devoid of livingtissue and implies an alteration of the nucleating sites ofthe cuticle in the course of the molt.  相似文献   

4.
The pattern of calcium carbonate deposition was observed in the dorsal carapace of premolt (D2-D3) and early postmolt (0-48 h) blue crabs, Callinectes sapidus, using scanning (SEM) and transmission (TEM) electron microscopy. Samples of dorsal carapace for SEM were quick-frozen in liquid nitrogen, subsequently lyophilized, and viewed using secondary and backscattered electrons as well as X-ray maps of calcium. Pieces of lyophilized cuticle were also embedded in epoxy resin and subsequently sectioned and viewed with TEM and SEM. Fresh pieces of dorsal carapace for TEM were also fixed in 2.5% glutaraldehyde in phosphate buffer followed by postfixation in 1% OsO4 in cacodylate buffer. Calcium concentrations were determined using atomic absorption spectrophotometry and quantitative X-ray microanalysis. Calcium accumulation began in the cuticle at 3 h postmolt at the epicuticle/exocuticle boundary and at the distal and proximal margins of the interprismatic septa (IPS). The bidirectional calcification of the IPS continued until the two fronts met at 5-8 h postmolt. The roughly hexagonal walls of the IPS formed a honeycomb-like structure that resulted in a rigid cuticle. The walls of the canal containing sensory neurons also calcified at 3 h, thereby imparting rigidity to the structure and additional strength to the cuticle. Examination of thin sections of lyophilized cuticle and fixed cuticle revealed that the first mineral deposited is more soluble than calcite and is probably amorphous calcium carbonate. The amorphous calcium carbonate is transformed to calcite along a front that follows the original deposition and is probably controlled by a specialized matrix within the IPS. Since amorphous calcium carbonate is isotropic, it would also make the mineral in the exocuticle stronger by an equal distribution of mechanical stress.  相似文献   

5.
Composition and spatial distribution of organic and inorganic materials within the cuticle of isopods vary between species. These variations are related to the behaviour and habitat of the animal. The troglobiotic isopod Titanethes albus lives in the complete darkness of caves in the Slovenian Karst. This habitat provides constant temperature and saturated humidity throughout the year and inconsistent food supply. These conditions should have lead to functional adaptations of arthropod cuticles. However, studies on structure and composition of cave arthropod cuticles are rare and lacking for terrestrial isopods. We therefore analysed the tergite cuticle of T. albus using transmission and field-emission electron microscopy, confocal μ-Raman spectroscopic imaging, quantitative X-ray diffractometry, thermogravimetric analysis and atomic absorption spectroscopy. The ultrastructure of the epicuticle suggests a poor resistance against water loss. A weak interconnection between the organic and mineral phase within the endo- and exocuticle, a comparatively thin apical calcite layer, and almost lack of magnesium within the calcite crystal lattice suggest that the mechanical strength of the cuticle is low in the cave isopod. This may possibly be of advantage in maintaining high cuticle flexibility and reducing metabolic expenditures.  相似文献   

6.
The crustacean cuticle is an interesting model to study the properties of mineralized bio-composites. The cuticle consists of an organic matrix composed of chitin–protein fibres associated with various amounts of crystalline and amorphous calcium carbonate. It is thought that in isopods the relative amounts of these mineral polymorphs depend on its function and the habitat of the animal. In addition to the composition, the distribution of the various components should affect the properties of the cuticle. However, the spatial distribution of calcium carbonate polymorphs within the crustacean cuticle is unknown. Therefore, we analyzed the mineralized cuticles of the terrestrial isopods Armadillidium vulgare and Porcellio scaber using scanning electron-microscopy, electron probe microanalysis and confocal μ-Raman spectroscopic imaging. We show for the first time that the mineral phases are arranged in distinct layers. Calcite is restricted to the outer layer of the cuticle that corresponds to the exocuticle. Amorphous calcium carbonate is located within the endocuticle that lies below the exocuticle. Within both layers mineral is arranged in rows of granules with diameters of about 20 nm. The results suggest functional implications of mineral distribution that accord to the moulting and escape behaviour of the animals.  相似文献   

7.
The ultrastructure and formation of the cuticle of a myodocopan ostracod, Euphilomedes japonica, are investigated utilizing scanning and transmission electron microscopy. The outer lamella cuticle consists of four layers; epicuticle, exocuticle, endocuticle, and membranous layer like in the cuticle of other arthropods. The exocuticle and endocuticle are well-calcified and the organic matrix develops within the both cuticles. The outermost layer of new cuticle (epicuticle) is secreted first and the inner layers (exocuticle, endocuticle and membranous layer) are added proximally in the pre-, and postmoult stages. The calcification takes place in the whole area of carapace at the same time together with the synthesis of organic matrix within the endocuticle. This study demonstrates that the ultrastructure and formation of the cuticle in myodocopans are different from those in podocopans, and that the myodocopan carapaces have achieved a structural diversity for adaptation to different lifestyles.  相似文献   

8.
The structure of the sclerite and intersegmental cuticle of the opithosoma of the desert scorpion, Hadrurus arizonensis, has been examined by transmission electron microscopy. The sclerite cuticle contains a four-layered epicuticle, a hyaline exocuticle, an inner exocuticle and an endocuticle. The outer part of the hyaline exocuticle and the whole of the inner exocuticle are constructed of helicoidally arranged planes of microfibrils. Within the endocuticle, the overall architecture is not helicoidal as previously assumed, but consists of bundles of microfibrils oriented horizontally and vertically. Microbibrils of the inner exocuticle and the endocutile are seen as simple unstained rods, but those of the hyaline exocuticle are electron dense rods with an unstained central core. The intersegmental cuticle contains a four-layered epicuticle and a procuticle. In detail, its fine structure differs in most respects from that of the sclerite cuticle. Electron microscopy reveals that hyaline exocuticle, previously assumed to be continuous from sclerite to intersegmental membrane, is absent in the latter.  相似文献   

9.
Morphological and chemical studies on the cuticle during the molt cycle of the crab Scylla serrata were performed in order to understand the layer formation. Cuticle ultrastructure was studied by scanning electron microscopy (SEM). Energy-dispersive, X-ray diffraction, and X-ray fluorescence analysis were used for identification of the elements and phases in the inner surface of the cuticle. In the first stage (A) of cuticle formation, a thin pellicle organized as an irregular fragmented structure is built. It is composed mainly of alpha-chitin/protein beta-keratin-like complexes where heterogeneous mineral nucleation occur. It is impregnated by ferric concretions, responsible for the brown colour of the carapace. At the beginning of the mineralization process, a spheroidal inorganic phase appears consisting of dicalcium phosphate dihydrate (DCPD) Ca/P=1.00, octacalcium phosphate (OCP) Ca/P=1.33 associated with hydromagnesite and bromapatite traces. During further cuticle development in the remaining A stage and in the beginning of the B stage, calcite and magnesian calcite are formed from the precursor calcium phosphate phase. The next development in the C stages is characterized by intense calcareous thickening consisting mainly of calcite and of magnesian calcite, which become the major mineral fraction of the cuticle. Organic-inorganic complex precipitations exhibit different aspects as spongiform, filamentary helicoidal, and concentric radial arrangements during C1, C2, and C3, respectively. During different stages of the cuticle formation in Scylla serrata, these mineral deposits may partially result from the balance among different organic contents, mainly between alpha-chitin and protein beta-keratin-like compounds. On the other hand, the calcium crystallization on apatite and calcite polymorphic structures may be influenced by variations of physico-chemical factors in the cuticle compartment. J. Exp. Zool. 293:414-426, 2002.  相似文献   

10.
C. Lemburg 《Zoomorphology》1998,118(3):137-158
 The ultrastructure of the cuticle of adult and larval Priapulus caudatus and Halicryptus spinulosus is investigated and new features of cuticle formation during moulting are described. For the localization of chitin by TEM wheat germ agglutinin coupled to colloidal gold was used as a marker. Proteinaceous layers of the cuticle are revealed by digestion with pronase. The cuticle of larval and adult specimens of both species consists of three main layers: the outer, very thin, electron-dense epicuticle, the electron-dense exocuticle and the fibrillar, electron-lucent endocuticle. Depending on the body region, the exocuticle comprises two or three sublayers. The endocuticle can be subdivided into two sublayers as well. In strengthened parts such as the teeth, the endocuticle becomes sclerotized and appears electron-dense. Only all endocuticular layers show an intense labelling with wheat germ agglutinin-gold conjugates in all investigated specimens. Additional weak labelling is observed in the exocuticle III layer of the larval lorica of P. caudatus. All other cuticular layers remain unlabelled. Chitinase dissolves the unsclerotized endocuticular layers almost completely, but also exocuticle II and partly the loricate exocuticle III. The epicuticle, the homogeneous exocuticle I and the sclerotized endocuticle are not affected by chitinase. The labelling is completely prevented in all layers after incubation with chitinase. Pronase dissolves all exocuticular layers, but not evenly. The presumably sclerotized regions of exocuticle I are not affected as well as the complete epicuticle and the endocuticle. All cuticular features of the Priapulida are compared with the cuticle of each high-ranked taxon within the Nemathelminthes with special regard to the occurrence of chitin. Based on this out-group comparison it can be concluded that: (1) a two-layered cuticle with a trilaminate epicuticle and a proteinaceous basal layer represents an autapomorphic feature of the Nemathelminthes, (2) the stem species of the Cycloneuralia have already evolved an additional basal chitinous layer, (3) such a three-layered cuticle is maintained as a plesiomophy in the ground pattern of the Scalidophora and (4) in the Nematoida, the chitinous basal layer is replaced by a collagenous one at least in the adults; the synthesis of chitin is restricted to early developmental phases or the pharyngeal cuticle. Accepted: 12 March 1998  相似文献   

11.
Cuticle segments from the thorax, abdomen, and jumping legs of the house cricket. Acheta domesticus, were examined using histological techniques for light microscopy, scanning and transmission electron microscopy, and direct examination of frozen-fractured cuticle. The surface of untreated cuticle is covered by a lipid film which obscures fine surface detail. Standard EM preparative procedures, as well as washing the cuticle with ethanol before examination, remove this film exposing previously covered openings to dermal gland ducts and wax canals. An epicuticle, exocuticle, mesocuticle, endocuticle, and a deposition layer were present in all transverse sections of cuticle. Light microscopy showed that the exocuticle and mesocuticle are heavily impregnated with lipids, whereas there is little lipid associated with the endocuticle. Frozen-fractured cuticle clearly shows the ‘plywood’ structure of the meso- and endocuticle, while the exocuticle fractures as if it were a solid sheet. The epicuticle is composed of a dense homogeneous layer, cuticulin, outer epicuticle, and the outer membrane. Superficial wax was detected only in cuticle samples prepared using vinylcyclohexane dioxide as a polar dehydrant. The results were used to construct a comprehensive model of the cuticle of A. domesticus.  相似文献   

12.
Mobilization of calcium during the molt cycle from the cuticle to transient calcium deposits is widely spread in crustaceans. The dynamics of calcium transport to transient calcium deposits called gastroliths and to the cuticle over the course of the molt cycle were studied in the crayfish Cherax quadricarinatus. In this species, calcium was deposited in the gastroliths during premolt and transported back to the cuticle during postmolt, shown by digital X-ray radiograph analysis. The predominant mineral in the crayfish is amorphous calcium carbonate embedded in an organic matrix composed mainly of chitin. Scanning electron micrographs of the cuticle during premolt showed that the endocuticle and parts of the exocuticle were the source of most of the labile calcium, while the epicuticle did not undergo degradation and remained mineralized throughout the molt cycle. The gastroliths are made of concentric layers of amorphous calcium carbonate intercalated between chitinous lamella. Measurements of pH and calcium levels during gastrolith deposition showed that calcium concentrations in the gastroliths, stomach, and muscle were about the same (10 to 11 mmol l(-1)). On the other hand, pH varied greatly, from 8.7+/-0.15 in the gastrolith cavity through 7.6+/-0.2 in muscle to 6.9+/-0.5 in the stomach.  相似文献   

13.
 Lattice organs consist of five pairs of sensory organs situated on the dorsal carapace in cypris larvae of the Crustacea Cirripedia. The lattice organs in cypris larvae of Trypetesa lampas (Acrothoracica) and Peltogaster paguri (Rhizocephala) represent the two main types found in cirripedes, but only minor differences exist at the TEM level. Each lattice organ is innervated by two bipolar, primary receptor cells. The inner dendritic segment of each receptor cell carries two outer dendritic segments. The outer dendritic segments contain modified cilia with a short ciliary segment (9×2+0 structure). Two sheath cells envelop the dendrite except for the distal ends of the outer dendritic segments. This distal end enters a cavity in the carapace cuticle and reaches a terminal pore situated at the far end of the cavity. The cuticle above the cavity is modified. In both species the epicuticle is partly perforated by numerous small pores and the underlying exocuticle is much thinner and less electron dense than the regular exocuticle. Lattice organs very probably have a chemosensory function and are homologous with the sensory dorsal organ of other crustacean taxa. Accepted: 18 August 1998  相似文献   

14.
Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle). Even though the ultrastructure of the arthropod cuticle has been studied rather extensively, its temporal developmental pattern, in particular, the synchronous development of the functional layers in different cuticles during a molt, is not well understood. The beetle elytron, which is a highly modified and sclerotized forewing, offers excellent advantages for such a study because it can be easily isolated at precise time points during development. In this study, we describe the morphogenesis of the dorsal and ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum, during the period from the 0 d-old pupa to the 9 d-old adult. The deposition of exocuticle and mesocuticle is substantially different in the two cuticles. The dorsal cuticle is four-fold thicker than the ventral. Unlike the ventral cuticle, the dorsal contains a thicker exocuticle consisting of a large number of horizontal laminae and vertical pore canals with pore canal fibers and rib-like veins and bristles as well as a mesocuticle, lying right above the enodcuticle. The degree of sclerotization appears to be much greater in the dorsal cuticle. All of these differences result in a relatively thick and tanned rigid dorsal cuticle and a much thinner and less pigmented membrane-like ventral cuticle.  相似文献   

15.
The paired infrared organs of Melanophila acuminata consist of 50-100 sensilla situated at the bottom of a pit next to the coxae of the mesothoracic legs, where no exocuticle is developed. Each sensillum is accompanied by a wax gland and has a cuticular lens-like spherule (diameter 12-15 mum) bulging out with its upper hemisphere above the surface, covered only by a thin cuticle of about 1 mum. Distal processes of two enveloping cells surround the entire spherule in the form of a flattened protoplasmatic layer with the exception of a small apical stalk connecting the spherule to the outer cuticle. The spherule is innervated by a single sensory neuron of the ciliary type which is anchored ventrally with the distal tip of its cylindrical and unbranched DOS in the spherule. The insertion of the dendrite, which contains a well-developed tubular body, is always eccentric like in a hair mechanoreceptor (sensillum trichodeum) and there is no evidence of any optical function of the spherule. Three enveloping cells exist, but only one - probably the trichogen cell - forms a relatively small outer receptor lymph cavity. In the posterior wall of the pit - where exocuticle is developed - so-called suppressed systems can be found which remain completely below the cuticle with their otherwise well-developed spherules. Additionally, there is a tendency towards basally flattening and longitudinally stretching of spherules which are situated more peripherally. They strongly resemble the basal regions of hair mechanoreceptors (sensilla trichodea) in their immediate neighbourhood which are also accompanied by wax glands. Because of the existence of these transitional stages and the great ultrastructural resemblance between infrared receptors and hair mechanoreceptors concerning the bauplan of the sensory neurons and their mode of innervating the cuticular apparatus, we conclude that the infrared sensilla are probably derived from hair mechanoreceptors. Based on these results and transmission measurements of infrared radiation through the cuticular components of the organ, a model of the possible function of the infrared receptor is presented.  相似文献   

16.
The largest arthropod cuticular protein family, CPR, has the Rebers and Riddiford (R&R) Consensus that in an extended form confers chitin-binding properties. Two forms of the Consensus, RR-1 and RR-2, have been recognized and initial data suggested that the RR-1 and RR-2 proteins were present in different regions within the cuticle itself. Thus, RR-2 proteins would contribute to exocuticle that becomes sclerotized, while RR-1s would be found in endocuticle that remains soft. An alternative, and more common, suggestion is that RR-1 proteins are used for soft, flexible cuticles such as intersegmental membranes, while RR-2s are associated with hard cuticle such as sclerites and head capsules. We used TEM immunogold detection to localize the position of several RR-1 and RR-2 proteins in the cuticle of Anopheles gambiae. RR-1s were localized in the procuticle of the soft intersegmental membrane except for one protein found in the endocuticle of hard cuticle. RR-2s were consistently found in hard cuticle and not in flexible cuticle. All RR-2 antibodies localized to the exocuticle and four out of six were also found in the endocuticle. Hence the location of RR-1s and RR-2s depends more on properties of individual proteins than on either hypothesis.  相似文献   

17.
A study of the integument of the aquatic mite Arrenurus major Marshall is presented. When the cuticle is examined with the unaided eye and the light microscope, it appears to possess numerous tiny pits. However, scanning electron micrographs of the cuticle reveal that it is a solid surface with topographical sculpturing of the epicuticle, indicating that the “pits” are an internal phenomenon. In cuticle which has been sectioned, areas devoid of cuticular material beneath the thin exocuticle are revealed. These areas are the pits which are goblet-shaped. The integument consists of five major strata. These are from the outside to the inside: (1) a superficial layer with a maximum observed thickness of 725 Å, (2) an epicuticle with a thickness of about 900 Å and composed of at least four sublayers, (3) an exocuticle with a thickness of about 1.5 Å. Fibers of the exocuticle are arranged in a Bouligand pattern and exhibit a regularly occurring discontinuity with a spacing of 200 Å. (4) An endocuticle ranging from 15 to 20 μ in thickness. The endocuticle is characterized by bandings which superficially resemble the lamellae of insects but are not homologous, microfibers which exhibit a preferred orientation, and the presence of the pits; and (5) an epidermis lying beneath the endocuticle and extending into the pits. Pore canals are present only in the exocuticle and have their origin at the apices of the pits. The pore canals contain a central filament, and a plug is present just beneath the epicuticle.  相似文献   

18.
The sclerotized cuticle of adult Tenebrio shows (1) an exocuticle composed of rotating lamellate layers and of columns of cuticular material, the fibres of which run perpendicularly through the lamellae, (2) an endocuticle composed of layers with preferred orientation. In the exocuticle, the pore canals are numerous and run along the columns; they do not rotate with the lamellate layers. They show several filaments some of which leave the canals and form a dense intracuticular network. In the last layers of exocuticle, the pericolumnar canals fuse and form large endocuticular canals which rotate in phase with the cuticular fibres. The formation of columns and canals is in relation with cellular expansions which penetrate into the cuticle during cuticle deposition. Exocuticular columns seem characteristic of highly sclerotized cuticles and the intracuticular filaments may have a role in the transport of sclerotisation precursors.  相似文献   

19.
The avian eggshell is a composite structure of organic matrix and mineral (calcium carbonate) that is rapidly and sequentially fabricated in the oviduct in <24 hr. The eggshell is an excellent vehicle for the study of biomineralization processes and the role of the organic matrix in the mineral-matrix composite. The organic matrix components of eggshells from White Leghorn chickens (Gallus gallus) were examined by transmission electron microscopy (TEM) and optical microscopy. The mineral phase was analyzed by TEM, scanning electron microscopy (SEM), X-ray compositional microanalysis, and electron diffraction. Ultrastructural examination of the matrices within the calcified eggshell reveals a complex architecture that differs within each of the major zones of the eggshell: the shell membranes, the mammillary zone, the palisade region, and the cuticle. The mammillary layer consists of the calcium reserve assembly (CRA) and crown region, each with a unique substructure. TEM images show that the matrix of the CRA consists of a dense, flocculent material partially embedded within the outer shell membrane (a mostly noncalcified region of the shell). The mantle of the collagen fibers of the shell membranes is rich in polyanions (cuprolinic blue-positive), as is the CRA matrix. The CRA is capped by a centrally located calcium reserve body sac (CRB sac) that contains numerous 300–400 nm, electron-dense, spherical vesicles. Directly above the CRB sac is a zone of matrix consisting of stacks of interconnected vesicles (similar in morphology to CRA vesicles) that are interspersed with a granular material. The palisade region, the largest of the mineralized zones, contains hollow vesicles ∼450 nm (s.d. = 75 nm) in diameter, with a crescent-shaped, electron-dense fringe. An interconnecting matrix material is also found between the vesicles in the palisades region. The cuticle is composed of two layers, a mineralized inner layer and an outer layer consisting of only organic matrix. The bulk of the mineral within the eggshell is calcite, with small amounts of needlelike hydroxyapatite in the inner cuticle and occasionally, vaterite micro crystals found at the base of the palisade (cone) region. The well-crystallized calcite crystals within the palisade are columnar, typically ∼20 μm wide by 100–200 μm long; aside from numerous entrapped vesicles and occasional dislocations, they are relatively defect-free. The bulk of the matrix found in the palisade and crown regions are thought to be residual components of the rapid mineralization process. The unique matrix structure within the CRB corresponds to the region of preferentially solubilized calcite used by the developing embryo and the hydroxyapatite found in the inner cuticle may play a role in the cessation of mineral growth. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Histological and histochemical methods have been employed to study the formation and growth of the exoskeleton in relation to the moulting cycle of the crab Menippe rumphii (Fabricius). In the premoult condition the epidermal cells secrete a two-layered cuticle. Later these layers are widened by the secretions coming from the reserve cells, tegumental glands, and the Leydig cells. The fully formed cuticle of the intermoult crab is divisible into four layers, epicuticle, exocuticle, mesocuticle, and endocuticle.Histochemical observations on different cells have revealed that the tegumental glands secrete both neutral and acid mucopolysaccharides. The reserve cells are positive to PAS, BPB, Sudan Black B and Alizarin Red S techniques indicating the presence of carbohydrates, proteins, lipids, and mineral calcium. The Leydig cells are loaded with enzymes, including alkaline phosphatase, acid phosphatase, lipase, and phenoloxidase. Other histochemical tests have been employed to investigate the formation of different layers of the cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号