首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A M Allan  R A Harris 《Life sciences》1986,39(21):2005-2015
Effects of ethanol and pentobarbital on the GABA receptorchloride channel complex were evaluated in mice selected for differential sensitivity to the hypnotic effects of ethanol (long sleep and short sleep lines). 36Cl- influx, [35S]tbutylbicyclophosphorothionate (TBPS) and [3H]muscimol binding were measured in a membrane vesicle suspension (microsacs) from cerebellum or forebrain. Muscimol was found to be a more potent stimulator of 36Cl- flux in the LS cerebellum, as compared to the SS cerebellum, but a similar maximal level of uptake was achieved in the two lines. Muscimol displaced [35S]TBPS (a ligand for the convulsant site) from cerebellar microsacs, and LS mice were also more sensitive than SS mice to this action of muscimol. However, the number or affinity of high affinity [3H]muscimol binding sites did not differ between the lines. Physiologically relevant concentrations of ethanol (15-50 mM) potentiated muscimol stimulation of 36Cl- uptake in LS cerebellum but had no effect in SS cerebellum. Ethanol failed to alter stimulated chloride flux hippocampal microsacs from either line. Both the LS and SS lines responded similarly to pentobarbital potentiation of muscimol stimulated chloride uptake regardless of brain region. The demonstrated difference between the LS and SS mice in muscimol stimulated chloride uptake as well as in muscimol displacement of [35S]TBPS binding offers a biochemical explanation for the line differences in behavioral responses to GABAergic agents. Moreover, the findings suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of GABA-operated chloride channels to ethanol.  相似文献   

2.
Significant differences in the thermal stability of benzodiazepine receptors were found in cerebral cortical membranes prepared from the long-sleep (LS) and short-sleep (SS) selected mouse lines. Thus, benzodiazepine receptors from LS mice were heat inactivated (55 degrees C) at a significantly faster rate than those from SS mice. Although gamma-aminobutyric acid (GABA) reduced the rate of heat inactivation in both lines, the more rapid rate of inactivation in the LS line was maintained. Furthermore, the potency of GABA to enhance [3H]flunitrazepam binding decreased threefold in membranes from LS mice as the incubation temperature was increased from 0 degrees to 37 degrees C, but was unaltered in membranes from SS mice. These differences in the biophysical properties of the benzodiazepine/GABA receptor chloride channel complex ("supramolecular complex"), together with a higher KD for t-[35S]butylbicyclophosphorothionate in membranes from LS compared to SS mice, suggest that the supramolecular complex may modulate the differential sensitivity to some depressants and convulsants in these lines.  相似文献   

3.
t-[35S]Butylbicyclophosphorothionate [( 35S]TBPS) has been shown to bind to the GABAA receptor complex. The binding is modulated allosterically by drugs that interact at components of the receptor complex. The present studies were designed to evaluate the influence of ionic environment and state of equilibrium on the allosteric modification of [35S]TBPS binding. In both I- and Cl- under nonequilibrium conditions, diazepam, gamma-aminobutyric acid (GABA), and pentobarbital (PB) stimulate and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) inhibits [35S]TBPS binding. In addition, there is an inhibitory component to the effect of GABA and PB at higher drug concentrations. These effects are blocked by the appropriate antagonists for each drug. In Cl-, the stimulation of [35S]TBPS binding by drugs disappears at equilibrium, whereas the inhibition by GABA and PB persists. The inhibitory effect of DMCM in Cl- also disappears at equilibrium. When assayed in I- at equilibrium, however, DMCM stimulates [35S]TBPS binding. In addition, bicuculline, which is without effect under nonequilibrium conditions in either Cl- or I-, stimulates [35S]TBPS binding in I- at equilibrium. The persistent effects of DMCM, bicuculline, and GABA in I- are accompanied by alterations in the affinity of [35S]TBPS for its receptor. In addition, the stimulation of [35S]TBPS binding by GABA is associated with a decreased number of [35S]TBPS binding sites. These data demonstrate that receptor complex interactions with anions influence the responsiveness to drug binding.  相似文献   

4.
Inhalation anesthetics, such as diethyl ether, halothane, and enflurane, increase 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent, picrotoxin-sensitive fashion. At concentrations consistent with those that stimulate 36Cl- uptake, inhalation anesthetics also inhibit the binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) to well-washed cortical membranes. Scatchard analysis of [35S]TBPS binding indicates that these agents reduce the apparent affinity of this radioligand and have little effect on the Bmax. The ability of inhalation anesthetics to directly stimulate 36Cl- uptake and inhibit [35S]TBPS binding is a property shared by nonvolatile anesthetics. Nonetheless, there are differences between nonvolatile agents (such as barbiturates and alcohols) and inhalation anesthetics, because the former compounds augment muscimol (a GABAmimetic) stimulated 36Cl- uptake, whereas the latter group (such as ether and enflurane) inhibit this effect. These findings demonstrate that therapeutically relevant concentrations of inhalation anesthetics perturb the benzodiazepine/gamma-aminobutyric acid receptor chloride channel complex, and suggest this oligomeric protein may be a common mediator of some aspects of anesthetic action.  相似文献   

5.
Six polychlorinated convulsant insecticides that potently inhibit t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes also potentiate the protective effect of NaCl (200 mM) against heat inactivation of [3H]flunitrazepam binding sites on the same membranes. Similar effects were obtained with all "cage" convulsants tested. The rank order of potencies as heat protection potentiators was similar to the rank order of potencies as inhibitors of [35S]TBPS binding (alpha-endosulfan greater than endrin greater than dieldrin greater than toxaphene greater than lindane). alpha-Endosulfan and endrin are more potent in both respects than any previously reported picrotoxin-like (cage) convulsant, but are much less toxic to mammals. The greatly reduced toxicities of alpha-endosulfan and endrin in mammals may reflect partial gamma-aminobutyric acid (GABA)-neutral properties of these compounds. Time courses of heat inactivation of [3H]flunitrazepam binding sites in the presence of 200 mM NaCl plus saturating concentrations of endrin or picrotoxin revealed monophasic components constituting about 88% of the binding sites, suggesting that virtually all [3H]flunitrazepam binding sites are coupled to picrotoxin binding sites in the GABA/benzodiazepine/picrotoxin receptor complex. Protection against heat inactivation constitutes a useful tool for characterizing the various allosterically linked binding sites in neurotransmitter receptor complexes.  相似文献   

6.
The role of t-butylbicyclophosphorothionate (TBPS) as an antagonist of gamma-aminobutyric acid (GABA) was studied with primary cultures of neurons from the chick embryo cerebrum. The addition of GABA stimulated the uptake of 36Cl- by neurons and the dose dependence of this effect followed hyperbolic kinetics with a K0.5 = 1.3 microM for GABA. TBPS proved to be a potent inhibitor of GABA-dependent Cl- uptake (IC50 = 0.30 microM). Analysis of the kinetics of this process revealed that TBPS is a noncompetitive inhibitor (Ki = 0.15 microM) with respect to GABA. Scatchard analysis of direct binding of [35S]TBPS to membranes isolated from neuronal cultures gave curvilinear plots. These could be resolved by nonlinear regression methods into two components with KD values of 3.1 nM and 270 nM. The TBPS binding constant for this lower affinity site agreed well with the IC50 and Ki values for inhibition of Cl- flux, suggesting that this site is physiologically relevant to GABA antagonism. GABA was a noncompetitive displacer of [35S]TBPS binding to the lower affinity site. The Ki value for this displacement by GABA (1.7 microM) was comparable to the value for GABA enhancement of Cl- flux. The binding of [35S]TBPS to its low-affinity site on neuronal membranes was ninefold higher in the presence of Cl- than with gluconate, an impermeant anion. The rank order for anion stimulation of [35S]TBPS binding was Br- greater than or equal to SCN- greater than Cl- greater than or equal to NO3- greater than I- greater than F- greater than gluconate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
4-aminobutyric acid (GABA)-gated chloride ion channels are important molecular targets for a number of polychlorocycloalkane compounds including cyclodiene insecticides. Previous radioligand binding studies have indicated that cyclodiene insecticides are potent inhibitors of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to housefly thorax and abdomen membranes. In the present study, a laboratory-reared, cyclodiene-resistant (CYW) housefly strain (Musca domestica) showed resistance to a number of cyclodiene insecticides. Specific, saturable [35S]TBPS binding was detected in thorax and abdomen membranes prepared from housefly strains susceptible (CSMA) and resistant (CYW) to cyclodienes. Scatchard analysis of [35S]TBPS binding data from CSMA and CYW membranes revealed no significant differences between the two strains in either the affinity (Kd) or the density (Bmax) of specific, saturable binding sites. There were no differences in the comparative effectiveness of a range of polychlorocycloalkanes, including cyclodiene insecticides, as inhibitors of specific [35S]TBPS binding to CSMA and CYW thorax and abdomen membranes. Therefore, if an alteration in target site is a mechanism for resistance to cyclodienes in the CYW strain, it is not readily measurable using [35S]TBPS.  相似文献   

8.
Specific binding of [35S]t-butylbicyclophosphorothionate (TBPS) to rat brain membranes (RBM) is enhanced nine-fold by EDTA/water dialysis and 1.3- to 4.2-fold by 50 nM ketosteroid R 5135, or 5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or related piperazine-N-alkanesulfonate buffers, or extensive washing with NaCl/Na phosphate or Na phosphate/citrate solution. About one-fifth of the [35S]TBPS binding capacity appears in the soluble fraction whereas the rest remains in particulate form on treatment of the EDTA/water-dialyzed RBM with 20 mM CHAPS. Similar KD values (64-86 nM) are obtained for the original EDTA/water-dialyzed membranes and the CHAPS-treated and/or -solubilized preparations. The Bmax of the EDTA-treated RBM is reduced five-fold on solubilization with CHAPS. The potency for displacement of [35S]TBPS changes in the presence of CHAPS or on CHAPS solubilization: gamma-aminobutyric acid (GABA) and muscimol inhibit specific [35S]TBPS binding more strongly in the absence than in the presence of CHAPS: TBPS, picrotoxinin, and photoheptachlor epoxide are almost equally active with RBM, RBM + CHAPS, and RBM solubilized with CHAPS. Levels of (1R, alpha S)-cis-cypermethrin and dimethylbutylbarbiturate which are inhibitory with RBM are moderately stimulatory after TBPS receptor solubilization. Thus CHAPS defines three regions of the GABA receptor-ionophore complex, i.e., the GABA and benzodiazepine receptors, the TBPS/picrotoxinin/polychlorocycloalkane receptor(s), and the sites at which the alpha-cyano pyrethroid and the barbiturate interact with TBPS binding.  相似文献   

9.
Abstract

The actions of insecticides on the insect γ-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.  相似文献   

10.
The effect of the general anesthetic propofol on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to unwashed membrane preparations from rat cerebral cortex was studied and compared to that of other general anesthetics (pentobarbital, alphaxalone) which are known to enhance GABAergic transmission. Propofol produced a concentration-dependent complete inhibition of [35S]TBPS binding, an effect similar to that induced by pentobarbital and alphaxalone, although these agents differ markedly in potency (alphaxalone greater than propofol greater than pentobarbital). The concomitant addition of propofol either with alphaxalone or pentobarbital produced an additive inhibition of [35S]TBPS binding, suggesting separate sites of action or different mechanisms of these drugs. Moreover, although bicuculline (0.1 microM) completely antagonized the propofol-induced inhibition of [35S]TBPS binding, the effect of this anesthetic was not due to a direct interaction with the gamma-aminobutyric acidA (GABAA) recognition site. In fact, propofol, like alphaxalone and pentobarbital, markedly enhanced [3H]GABA binding in the rat cerebral cortex. Finally, propofol was able to enhance [3H]GABA binding in membranes previously incubated with the specific chloride channel blocker picrotoxin. Taken together these data strongly suggest that propofol, like other anesthetics and positive modulators of GABAergic transmission, might exert its pharmacological effects by enhancing the function of the GABA-activated chloride channel.  相似文献   

11.
The characteristics of [3H]strychnine and t-[35S]-butylbicyclophosphorothionate ([35S]TBPS) binding to sites associated with glycine- and gamma-aminobutyric acid (GABA)-gated chloride channels were compared in the presence of a series of anions with known permeabilities through these channels. Good correlations were found between (a) the potencies (EC50) of these anions to stimulate radioligand binding and their permeabilities relative to chloride; (b) the affinities (KD) of these radioligands in the presence of fixed concentrations of these anions and their relative permeabilities; (c) the potencies (EC50) of these anions to stimulate [35S]TBPS and [3H]strychnine binding; and (d) the affinities (KD) of [3H]strychnine and [35S]TBPS measured at a fixed concentration of these anions. These studies support electrophysiological and biochemical observations demonstrating similarities between glycine- and GABA-gated chloride channels, and suggest that anions enhance [3H]strychnine and [35S]TBPS binding through specific anion binding sites located at the channels.  相似文献   

12.
No significant differences are evident in the specific binding characteristics of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) to EDTA/water-dialyzed P2 membranes of human, cow, rat, chicken and fish brain. This species similarity includes dissociation constants of 61-77 nM at 37 degrees C, maximum receptor densities of 3-7 pmol/mg protein, and sensitivity to inhibition or displacement by gamma-aminobutyric acid (GABA), two cage convulsants (picrotoxinin and t-butylbicycloorthobenzoate) and the insecticide [1R,cis, alpha S]-cypermethrin, indicating a constancy during vertebrate evolution of the [35S]TBPS binding site and its coupling with other components of the GABA receptor-ionophore complex. As a possible exception, chicken and fish brain membranes appear to be less sensitive than the others to the insecticide alpha-endosulfan. Human and rat preparations are also essentially identical relative to the inhibition of radioligand binding by two GABA mimetics (muscimol and 3-amino-propanesulfonic acid), six other cage convulsants (including examples of three classes of polychlorocycloalkane insecticides), a potent anthelmintic agent (Ivermectin), dimethylbutylbarbiturate, the convulsant benzodiazepine Ro 5-3663, and ethanol. The findings to date with [35S]TBPS and the GABA receptor-ionophore complex in rat brain membranes are therefore generally applicable to human preparations. Cow brain is an appropriate source for large scale preparations in receptor purification studies since it is essentially identical to human and rat preparations in all parameters examined. Species differences in sensitivity to the toxic effects of the convulsants and polychlorocycloalkane insecticides considered are apparently not attributable to receptor site specificity.  相似文献   

13.
The binding of t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to a site on the GABAA receptor complex is ion dependent. This study was conducted to determine the effects of ion species and concentration on the time course, affinity, and number of sites of [35S]TBPS binding. At a concentration of 200 mM ion, the time to equilibrium for [35S]TBPS binding was shortest for I-, followed by Br- less than Cl- less than F-. A similar rank order was observed for the concentration of ion required to produce half-maximal [35S]TBPS binding. Saturation binding experiments were conducted to evaluate the effect of increasing ion concentration on the KD and Bmax of [35S]TBPS binding. The Bmax was independent of both ion species and concentration. The receptor affinity, however, increased with increasing concentration for each ion. Calculated maximal affinity values were not different between ions; however, the EC50 to produce those values was different among ions and ranked in the same order as that for time course and maximal binding data. Association and dissociation rates for [35S]TBPS binding were greater in I- than in Cl-. These data emphasize the importance of ion selection and incubation times on [35S]TBPS binding.  相似文献   

14.
The effect of foot-shock stress on t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) binding to fresh unwashed membrane preparations from rat cerebral cortex was studied and was compared to those of GABAA receptor agonists and antagonists and to positive and negative modulators of the GABAergic transmission. [35S]TBPS binding was increased in the cerebral cortex of rats exposed to foot shock compared to that of nonstressed rats. Scatchard analysis revealed that the effect of foot shock was due to an increase in the total number of [35S]TBPS binding sites. In contrast, the in vitro addition of muscimol or GABA induced a dose-dependent inhibition of [35S]TBPS binding, an effect abolished by the concomitant addition of the GABA receptor antagonist, bicuculline, which, per se, enhanced [35S]TBPS binding by 73%. Thus, bicuculline, similar to stress, increased [35S]TBPS binding in the same membrane preparation. In contrast to stress, the anxiolytic and positive modulators of the GABAergic transmission (ZK 93423, ZK 91296, and diazepam) inhibited the specific binding of [35S]TBPS in a concentration-dependent manner. The greatest inhibitory effect was produced by ZK 93423 at 30 microM (31% of control), followed by diazepam (54% of control) and by the partial agonist ZK 91296 (61% of control). Scatchard plot analysis indicated that the inhibition induced by ZK 93423 and diazepam was due to a decrease in the density of [35S]TBPS recognition sites. On the other hand, the anxiogenic beta-carbolines DMCM and FG 7142 mimicked the effect of stress. Thus, at a 10 microM concentration, DMCM and FG 7142 increased [35S]TBPS binding by 22% and 26%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Abstract: The effects of GABA on the kinetics of tert -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the convulsant site of GABAA receptors were studied in membrane suspensions from the cerebral cortex of newborn (1-day-old) and adult (90-day-old) rats. TBPS dissociation was biphasic in neonates and adults, indicating that more than one interconvertible state of [35S]TBPS binding sites may be present in the cerebral cortex. In the absence of GABA, the fast ( t 1/2, 11 min) and slow ( t 1/2, 77 min) components of TBPS dissociation in newborn rats were approximately fourfold slower than in adults. The acceleration of the dissociation rates caused by 2 µ M GABA, however, was more robust in neonates than in adults (six- to ninefold vs. twofold increase, respectively). Moreover, the dissociation rates of TBPS in membranes preincubated with 2 µ M GABA (dissociation started by adding 40 µ M picrotoxin) were two- to fourfold slower than in membranes preincubated without GABA (dissociation started by adding 40 µ M picrotoxin plus 2 µ M GABA). Taken together, these results suggest that (1) the closed state of GABAA receptors is associated with a more effective steric barrier for the binding of TBPS in neonates compared with adults, (2) GABA produces a larger acceleration of the binding kinetics of TBPS in neonates than in adults, and (3) long incubations with GABA may cause receptor desensitization, which in turn slows down the dissociation rates of TBPS.  相似文献   

16.
The effects of acute convulsive doses of pentylentetrazol (PTZ) on [35S]t-butyl-bicyclophosphorothionate (TBPS), [3H]flunitrazepam (FNP), [3H]muscimol, and [3H]-aminobutyric acid (GABA) binding sites were examined in well-washed homogenates of various brain regions of rat. Except for a significant increase in the number of striatal [35S]TBPS binding sites, no significant change in [35S]TBPS, [3H]FNP, [3H]muscimol, and [3H]GABA binding was found in various brain regions 30 min after subcutaneous injection of PTZ at 90 or 100 mg/kg. Similarly there were no significant changes in [35S]TBPS and [3H]FNP binding to unwashed P2 membranes of cerebral cortices 30 min following administration of convulsive doses of PTZ. These experiments failed to demonstrate acute modulation of GABA-A/benzodiazepine/picrotoxinin receptor complex by PTZ in the various brain regions examined except striatum. The significance of the increased [35S]TBPS binding in striatum caused by PTZ remains unclear.  相似文献   

17.
The binding of [35S]t-butylbicyclophosphorothionate ([35S]TBPS), a gamma-aminobutyric acid (GABA)-activated chloride ionophore ligand; [3H]diazepam, a benzodiazepine agonist; and [3H]muscimol, a GABA receptor probe, were used to assess the effects at 100 microM of deltamethrin, dichlorodiphenyltrichloroethane (DDT), and three experimental insecticides--a DDT-pyrethroid hybrid, GH414 (cycloprothrin), and two DDT-analogues, GH266 and GH149 (EDO), on GABA receptor ionophore complexes in a rat brain membrane preparation. GH266 and GH149 were found to inhibit a greater percentage of [35S]TBPS binding than the same concentration of deltamethrin or DDT, although GH414 had little effect. GH266 and GH149 enhanced [3H]diazepam binding by nearly 200%, in contrast to the inhibitory effects of deltamethrin, DDT, and GH414. GH266 and GH149 also caused a dramatic enhancement of [3H]muscimol binding, 367 and 236% of control, respectively, whereas DDT and deltamethrin caused only a moderate enhancement. The effects of the insecticides on binding affinity and density were examined for each of the ligands. The results show a differential interaction of the insecticides on the various ligand binding sites.  相似文献   

18.
Muscimol and t-butylbicyclophosphorothionate (TBPS) are known to label two distinct sites within the gamma-aminobutyric acidA (GABAA) receptor complex, i.e., the GABA recognition site and the chloride ionophore, respectively. Age-dependent changes in the specific binding of [3H]muscimol and [35S]TBPS were compared in membranes prepared from the cerebral cortex of rats, 2-800 days old. Perinatal (day 2) binding of muscimol and TBPS represented 8 and 20% of the respective values for adults (day 180). After the first week, muscimol binding increased more rapidly than TBPS binding. Levels near those of adults were reached at day 20 and remained practically unchanged in adulthood (day 180). In aged (780-day-old) rats, the binding of TBPS was significantly reduced, whereas muscimol binding did not change compared with adult values. This decrease of TBPS binding derived from a reduced density of binding sites, rather than from affinity changes. The allosteric responsiveness of TBPS binding to exogenous GABA was also reduced in aged animals. These findings indicate an age-related change in the molecular (structural) organization of the GABAA receptor-chloride ionophore complex in rat cerebral cortex.  相似文献   

19.
The effects of acute and chronic administration of a subconvulsive dose of picrotoxin on t-[35S]butylbicyclophosphorothionate ([3S]TBPS), [3H]muscimol, and [3H]flunitrazepam binding characteristics in various regions and on the convulsant potency of picrotoxin in Sprague-Dawley rats were examined. Acute administration of a subconvulsive dose of picrotoxin (3 mg/kg, i.p.) significantly increased [35S]TBPS and [3H]muscimol binding in cerebellum (CB) with no change in frontal cortex (FC). In rats treated chronically with picrotoxin (3 mg/kg, i.p., daily for 10 days), the Bmax of [35S]TBPS binding site was significantly decreased in the FC, striatum (ST), and CB with no change in KD values. Neither [3H]muscimol binding in the FC and CB nor [3H]flunitrazepam binding in the FC was affected in these rats. In addition, the potency of pentobarbital to inhibit [35S]TBPS binding in vitro was not altered following acute or chronic treatment of picrotoxin. Chronic administration of picrotoxin did not affect convulsive ED50 or LD50 of picrotoxin; however, it delayed the onset of convulsions and increased the time to death. These results suggest that treatment with picrotoxin at a subconvulsive dose for 10 days causes down-regulation of [35S]TBPS binding sites and that this down-regulation might be related, at least in part, to the decreased extent of convulsant potency of picrotoxin. In addition, the results indicate possible interaction between convulsant binding sites and GABAA receptor sites in the CB following picrotoxin treatment.  相似文献   

20.
The anthelminthic natural product avermectin B1a (AVM) modulates the binding of gamma-aminobutyric acid (GABA) and benzodiazepine (BZ) receptor ligands to membrane homogenates of mammalian brain. The potent (EC50 = 40 nM) enhancement by AVM of [3H]diazepam binding to rat or bovine brain membranes resembled that of barbiturates and pyrazolopyridines in being inhibited (partially) by the convulsants picrotoxin, bicuculline, and strychnine, and by the anticonvulsants phenobarbital and chlormethiazole. The maximal effect of AVM was not increased by pentobarbital or etazolate. However, AVM affected BZ receptor subpopulations or conformational states in a manner different from pentobarbital. Further, unlike pentobarbital and etazolate, AVM did not inhibit allosterically the binding of the BZ receptor inverse agonist [3H]beta-carboline-3-carboxylate methyl ester, nor did it inhibit, but rather enhanced, the binding of the cage convulsant [35S]t-butyl bicyclophosphorothionate to picrotoxin receptor sites. AVM at submicromolar concentrations had the opposite effect of pentobarbital and etazolate on GABA receptor binding, decreasing by half the high-affinity binding of [3H]GABA and related agonist ligands, and increasing by over twofold the binding of the antagonist [3H]bicuculline methochloride, an effect that was potentiated by picrotoxin. AVM also reversed the enhancement of GABA agonists and inhibition of GABA antagonist binding by barbiturates and pyrazolopyridines. These overall effects of AVM are unique and require the presence of another separate drug receptor site on the GABA/BZ receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号