首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an alternative to swimming through liquid medium by the coordinated bending activity of its two flagella, Chlamydomonas can exhibit whole cell gliding motility through the interaction of its flagellar surfaces with a solid substrate. The force transduction occurring at the flagellar surface can be visualized as the saltatory movements of polystyrene microspheres. Collectively, gliding motility and polystyrene microsphere movements are referred to as flagellar surface motility. The principal concanavalin A binding, surface-exposed glycoproteins of the Chlamydomonas reinhardtii flagellar surface are a pair of glycoproteins migrating with apparent molecular weight of 350 kDa. It has been hypothesized that these glycoproteins move within the plane of the flagellar membrane during the expression of flagellar surface motility. A novel mutant cell line of Chlamydomonas (designated L-23) that exhibits increased binding of concanavalin A to the flagellar surface has been utilized in order to restrict the mobility of the concanavalin A-binding flagellar glycoproteins. Under all conditions where the lateral mobility of the flagellar concanavalin A binding glycoproteins is restricted, the cells are unable to express whole cell gliding motility or polystyrene microsphere movements. Conversely, whenever cells can redistribute their concanavalin A binding glycoproteins in the plane of the flagellar membrane, they express flagellar surface motility. Since the 350 kDa glycoproteins are the major surface-exposed flagellar proteins, it is likely that most of the signal being followed using fluorescein isothiocyanate (FITC)-concanavalin A is attributable to these high molecular weight glycoproteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Regulation of flagellar glycoprotein movements by protein phosphorylation   总被引:3,自引:0,他引:3  
Cross-linking of surface exposed domains on certain Chlamydomonas flagellar membrane glycoproteins induces their movement within the plane of the flagellar membrane. A number of observations suggest that active movements of flagellar membrane glycoproteins are associated with the processes of whole cell gliding motility and the early events of fertilization in Chlamydomonas. Protein redistribution is totally inhibited if the free calcium concentration in the medium is 10(-7) M or below or in the presence of a number of calcium channel blockers (Bloodgood, R. A., N. L. Salomonsky, J. Cell Sci. 96, 27-33 (1990]. The present report demonstrates that glycoprotein redistribution in vivo is inhibited reversibly by three different protein kinase inhibitors: H-7, H-8 and staurosporine. Taken together, these observations suggest that the flagellum uses a signaling pathway that involves calcium influx induced by glycoprotein cross-linking, calcium activation of a protein kinase and specific protein phosphorylation to initiate flagellar surface dynamics.  相似文献   

3.
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.  相似文献   

4.
Reversible inhibition of Chlamydomonas flagellar surface motility   总被引:3,自引:2,他引:1       下载免费PDF全文
Chlamydomonas exhibits force transduction in association with its flagellar surface; this can be visualized by the saltatory movements of attached polystyrene microspheres. This flagellar surface motility has been quantitated by determining the percentage of attached microspheres in motion at the time of observation (60% in the case of control cells at 25 degrees C). A number of experimental treatments reversibly inhibit flagellar surface motility. These include an increase in sodium or potassium chloride concentration, a decrease in temperature, or a decrease in the free calcium concentration in the medium. Many of the conditions that result in inhibition of flagellar surface motility also result in an induction of flagellar resorption. Although both flagellar stability and flagellar surface motility are dependent on the availability of calcium, the two processes are separable; under appropriate conditions, flagellar surface motility can occur at normal levels on flagella that are resorbing. Inhibition of protein synthesis results in a gradual loss of both the binding of microspheres to the flagellum and the flagellar surface motility. After resumption of protein synthesis, both binding and movement return to control levels. The effect of the inhibition of protein synthesis is interpreted in terms of selective turnover of certain components within the intact flagellum, one or more of these components being necessary for the binding of the microspheres and their subsequent movement. If this turnover is inhibited by keeping the cells below 5 degrees C, the absence of protein synthesis no longer has an effect on microsphere attachment and motility, when measured immediately after warming the cells to 25 degrees C.  相似文献   

5.
Summary The biflagellate green algaChlamydomonas can exhibit substrate-associated gliding motility in addition to its ability to swim through a liquid medium. The flagella are the organelles responsible for both forms of whole-cell locomotion although the mechanism in each case is very different. In this study, we demonstrate that the binding of polystyrene microspheres to the flagellar surface ofChlamydomonas initiates clustering of the major flagellar-membrane glycoprotein, which is known to be involved in motility-associated substrate adhesion. In addition, we demonstrate that microsphere binding to the flagellar surface initiates the same transmembrane signaling pathway that is initiated by antibody- or lectin-induced crosslinking of the major flagellar-membrane glycoprotein. In each case, the signaling pathway involves the activation of a calciumdependent protein phosphatase that dephosphorylates a flagellar phosphoprotein known to be associated with the major flagellar-membrane glycoprotein. Bound microspheres are translocated along the flagellar surface at approximately the same velocity as whole-cell gliding motility. Previous observations suggest that microsphere binding and translocation along the flagellar surface may be a reflection of the same force-transducing system responsible for whole-cell gliding motility. In which case, these observations suggest that the transmembrane signaling pathway initiated by crosslinking the major flagellar-membrane glycoprotein is the same one that is activated when the cell contacts a physiological substrate by its flagellar surface.  相似文献   

6.
Normal cilia length and motility are critical for proper cellular function. Prior studies of the regulation of ciliary structure and length have primarily focused on the intraflagellar transport machinery and motor proteins required for ciliary assembly and disassembly. However, several mutants with abnormal length flagella highlight the importance of signaling proteins as well. In this study, an unbiased chemical screen was performed to uncover signaling pathways that are critical for ciliogenesis and length regulation using flagella of the green alga Chlamydomonas reinhardtii as a model. The annotated Sigma LOPAC1280 chemical library was screened for effects on flagellar length, motility, and severing as well as cell viability. Assay data were clustered to identify pathways regulating flagella. The most frequent target found to be involved in flagellar length regulation was the family of dopamine binding G-protein coupled receptors (GPCRs). In mammalian cells, cilium length could indeed be altered with expression of the dopamine D1 receptor. Our screen thus reveals signaling pathways that are potentially critical for ciliary formation, resorption, and length maintenance, which represent candidate targets for therapeutic intervention of disorders involving ciliary malformation and malfunction.  相似文献   

7.
Two carbohydrate-binding probes, the lectin concanavalin A and an anti-carbohydrate monoclonal antibody designated FMG-1, have been used to study the distribution of their respective epitopes on the surface of Chlamydomonas reinhardtii, strain pf-18. Both of these ligands bind uniformly to the external surface of the flagellar membrane and the general cell body plasma membrane, although the labeling is more intense on the flagellar membrane. In addition, both ligands cross-react with cell wall glycoproteins. With respect to the flagellar membrane, both concanavalin A and the FMG-1 monoclonal antibody bind preferentially to the principal high molecular weight glycoproteins migrating with an apparent molecular weight of 350,000 although there is, in addition, cross-reactivity with a number of minor glycoproteins. Western blots of V-8 protease digests of the high molecular weight flagellar glycoproteins indicate that the epitopes recognized by the lectin and the antibody are both repeated multiple times within the glycoproteins and occur together, although the lectin and the antibody do not compete for the same binding sites. Incubation of live cells with the monoclonal antibody or lectin at 4 degrees C results in a uniform labeling of the flagellar surface; upon warming of the cells, these ligands are redistributed along the flagellar surface in a characteristic manner. All of the flagellar surface-bound antibody or lectin collects into a single aggregate at the tip of each flagellum; this aggregate subsequently migrates to the base of the flagellum, where it is shed into the medium. The rate of redistribution is temperature dependent and the glycoproteins recognized by these ligands co-redistribute with the lectin or monoclonal antibody. This dynamic flagellar surface phenomenon bears a striking resemblance to the capping phenomenon that has been described in numerous mammalian cell types. However, it occurs on a structure (the flagellum) that lacks most of the cytoskeletal components generally associated with capping in other systems. The FMG-1 monoclonal antibody inhibits flagellar surface motility visualized as the rapid, bidirectional translocation of polystyrene microspheres.  相似文献   

8.
Ciliary membranes have a large repertoire of receptors and ion channels that act to transduce information from the environment to the cell. Chlamydomonas offers a tractable system for dissecting the transport and function of ciliary and flagellar membrane proteins. Isolation of ergosterol and sphingolipid-enriched Chlamydomonas flagellar membrane domains identified potential signaling molecules by mass spectroscopy. These include a membrane protein and a matrix flavodoxin protein that are encoded by the AGG2 and AGG3 genes, respectively. Agg2p localizes to the proximal flagellar membrane near the basal bodies. Agg3p is distributed throughout the flagellar matrix, with an increased concentration in the proximal regions where Agg2p is located. Chlamydomonas cells sense light by using a microbial-type rhodopsin , transduce a signal from the cell body to the flagella, and alter the waveform of the flagella to turn a cell toward the light. Protein depletion by RNA interference reveals that both AGG gene products play roles in the orientation of cells to a directional light source. The depleted strains mimic the phenotype of the previously identified agg1 mutant, which swims away from light. We propose that the localization of Agg2p and Agg3p to the proximal region of the flagella may be important for interpreting light signals.  相似文献   

9.
Chlamydomonas flagella exhibit force transduction in association with their surface. This flagellar surface motility is probably used both for whole cell gliding movements (flagella-substrate interaction) and for reorientation of flagella during mating (flagella-flagella interaction). The present study seeks to identify flagellar proteins that may function as exposed adhesive sites coupled to a motor responsible for their translocation in the plane of the plasma membrane. The principal components of the flagellar membrane are a pair of glycoproteins (approximately 350,000 mol wt), with similar mobility on SDS polyacrylamide gels. A rabbit IgG preparation has been obtained which is specific for these two glycoproteins; this antibody preparation binds to and agglutinates cells by their flagellar surfaces only. Treatment of cells with 0.1 mg/ml pronase results in a loss of motility-coupled flagellar membrane adhesiveness. This effect is totally reversible, but only in the presence of new protein synthesis. The major flagellar protein modified by this pronase treatment is the faster migrating of the two high molecular weight glycoproteins; the other glycoprotein does not appear to be accessible to external proteolytic digestion. Loss and recovery of flagella surface binding sites for the specific antibody parallels the loss and recovery of the motility-coupled flagellar surface adhesiveness, as measured by the binding and translocation of polystyrene microspheres. These observations suggest, but do not prove, that the faster migrating of the major high molecular weight flagellar membrane glycoproteins may be the component which provides sites for substrate interaction and couples these sites to the cytoskeletal components responsible for force transduction.  相似文献   

10.
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.  相似文献   

11.
Radioactive labeling studies demonstrate a continuous incorporation of newly synthesized proteins and glycoproteins into the intact flagella of Chlamydomonas. This apparent turnover is preferentially occurring for membrane components. In particular, two classes of flagellar membrane components, one a high molecular weight (HMW) group of closely migrating glycoproteins and the other a protein with a MW around 65 kD, are continuously turning over in the vegetative cell. This selective protein turnover may explain the ability of Chlamydomonas to rapidly recover from proteolytic modification of the flagellar surface and to change its flagellar surface properties during the early events in mating.  相似文献   

12.
A flagellar adhesion-induced signal sent during the mating reaction of the biflagellate alga, Chlamydomonas reinhardtii, initiates release of cell-wall-degrading enzymes, activation of mating structures, and cell fusion. The nature of this signal is unknown, but it may be mediated by an adhesion-induced change (activation) of flagellar tips. The studies reported here show that lidocaine, a local anesthetic that is reported to interfere with the movement of divalent cations across cell membranes, reversibly blocks cell wall loss and gametic fusion without blocking adhesion or flagellar tip activation. In these experiments lidocaine inhibited both the initial rates and the extent of wall loss and zygote formation. Studies with gametes of a paralyzed flagellar mutant, pf 17, revealed that lidocaine also blocked flagellar surface motility (visualized as movement of polystyrene beads) at concentrations of the inhibitor which also prevented gametic fusion. The concentration of lidocaine required to block cell fusion was dependent on the concentration of calcium or magnesium in the medium. In the absence of added calcium, 0.5 mM lidocaine inhibited fusion by 70%. In 0.5 mM calcium, 0.5 mM lidocaine had no effect on fusion and 2 mM lidocaine was required for 90% inhibition. The results suggest that divalent cations may play a critical role in sexual signalling in Chlamydomonas.  相似文献   

13.
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question ‘how do cilia organize signalling?’. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.  相似文献   

14.
Summary TheChlamydomonas flagellar surface exhibits a number of dynamic properties associated with whole cell locomotion and the mating process. In this report, we quantitate the ability of a series of gliding defective mutant cell lines (Lewin 1982) to move polystyrene microspheres along their flagellar surface and describe alterations in the flagellar surfaces of three of these cell lines (fg-2, fg-3 and fg-7). Although all three of these mutant cell strains exhibit less than 16% of the control level of microsphere movement, they differ from each other and the parental cell line (M 475) in the level of flagellar surface adhesiveness as judged by the binding of polystyrene microspheres. SDS-polyacrylamide gel analysis of purified whole flagella from the nongliding mutant cell strains and M 475 demonstrates a correlation between the amount of a surface exposed glycoprotein and the level of flagellar surface adhesiveness. This surface exposed glycoprotein binds the lectin concanavalin A and has an apparent molecular weight of 240 kDa. Strains with low levels of flagellar surface adhesiveness (fg-3 and fg-7) exhibit a low amount of this glycoprotein while the strain with a high level of adhesiveness (fg-2) has an elevated amount of this glycoprotein relative to the parental strain, suggesting that this 240 kDa glycoprotein may be responsible for the adhesive properties of the flagellar surface. Concanavalin A inhibits microsphere binding to the flagellar surface, suggesting that the carbohydrate component of the 240 kDa glycoprotein may be involved in flagellar surface adhesiveness. Biotinylation of surface-exposed flagellar proteins demonstrates differences in the surfaces of these mutant cell lines, especially in terms of the amount of surface labelling of the 240 kDa flagellar glycoprotein. A rabbit polyclonal antibody (designated P-19) that binds to the flagellar surface and recognizes the 240 kDa glycoprotein on Western blots confirms the altered level of this glycoprotein in the mutant cell lines. The results of these experiments suggest that the major flagellar glycoprotein ofC. moewusii may be involved in adhesion of polystyrene microspheres to the flagellar surface and presumably also in the adhesive interaction of the flagellar surface with a solid substrate, which is a necessary prerequisite for the expression of gliding motility.Abbreviations BSA bovine serum albumin - DAB 3,3-diaminobenzidine - HRP horseradish peroxidase - kDa kilodaltons - LBB lectin blot buffer - NHS-LC biotin sulfosuccinimidyl 6-(biotinamido) hexanoate - PBS phosphate buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

15.
Gametic mating by Chlamydomonas reinhardi is inhibited in a dose-dependent and reversible manner by the calmodulin antagonists trifluoperazine (TFP) and W-7, but not by W-5, an analog of W-7 having lower affinity for calmodulin. Quantitation of the sequential steps of mating showed that TFP and W-7 both allow normal levels of flagellar agglutination but prevent all subsequent steps. Gametes agglutinate aberrantly and do not form mating pairs. Further, both of these drugs prevent the translocation of latex beads along the flagellar surface. Our observations suggest that calmodulin may play an integral role in the translocation of flagellar adhesion sites during the tip-locking stage of the Chlamydomonas mating reaction. Flagellar surface motility may be crucial to the transduction of signals during mating and may share regulatory mechanisms with other forms of surface motility.  相似文献   

16.
17.
Regulation of flagellar activity in Chlamydomonas involves both Ca(2+) and cAMP-mediated signaling pathways. However, Chlamydomonas and sea urchin sperm flagella also exhibit nucleoside-diphosphate kinase (NDK) activity, suggesting a requirement for GTP within this highly conserved organelle. In sea urchin sperm, the NDK catalytic subunit is an integral component of the outer dynein arm. Here we describe a modular protein (p72) from the Chlamydomonas flagellum that consists of three domains closely related to the presumptive regulatory segment of rat NDK-7 followed by two EF-hands that are predicted to bind Ca(2+). There are close homologues of p72 in both mammalian and insect genomes. The p72 protein is tightly associated with the flagellar axoneme and is located along the entire length except at the transition zone. Cross-linking experiments suggest that p72 interacts with two or three additional axonemal polypeptides. The sensitivity of p72 to tryptic digestion differed considerably in the presence and the absence of Ca(2+), suggesting that it indeed binds this ligand. These studies indicate that the flagellar NDK system is bipartite with the regulatory and catalytic components residing on different polypeptides. We propose that Ca(2+) regulation of flagellar motility in Chlamydomonas may be achieved in part through a downstream GTP-mediated signaling pathway.  相似文献   

18.
Crosslinking of surface-exposed domains on certain Chlamydomonas flagellar membrane glycoproteins induces their movement within the plane of the flagellar membrane. Previous work has shown that these membrane glycoprotein movements are dependent on a critical concentration of free calcium in the medium and are inhibited reversibly by calcium channel blockers and the protein kinase inhibitors H-7, H-8, and staurosporine. These observations suggest that the flagellum may use a signaling pathway that involves calcium-activated protein phosphorylation to initiate flagellar membrane glycoprotein movements. In order to pursue this hypothesis, we examined the calcium dependence of phosphorylation of flagellar membrane-matrix proteins using an in vitro system containing [gamma-32P]ATP or [35S]ATP gamma S. Using only endogenous enzymes and endogenous substrates found in the membrane-matrix fraction obtained by extraction of flagella with 0.05% Nonidet P-40, we observed both calcium-independent protein phosphorylation and calcium-dependent protein phosphorylation in addition to an active protein dephosphorylation activity. Addition of micromolar free calcium increased the amount of protein phosphorylation severalfold. Calcium-activated protein kinase activity was inhibited by H-7, H-8, and staurosporine, the same protein kinase inhibitors that inhibit the calcium-dependent glycoprotein redistribution in vivo. A small group of polypeptides in the 26-58 kDa range exhibited a dramatic increase in phosphorylation in the presence of 20 microM free calcium. We suggest that Chlamydomonas utilizes the intraflagellar free calcium concentration to regulate the phosphorylation of specific flagellar proteins in the membrane-matrix fraction, one or more of which may be involved in regulating the machinery responsible for flagellar membrane glycoprotein redistribution.  相似文献   

19.
Cilia are disassembled prior to cell division, which is proposed to regulate proper cell cycle progression. The signaling pathways that regulate cilia disassembly are not well-understood. Recent biochemical and genetic data demonstrate that protein phosphorylation plays important roles in cilia disassembly. Here, we analyzed the phosphoproteins in the membrane/matrix fraction of flagella undergoing shortening as well as flagella from steady state cells of Chlamydomonas. The phosphopeptides were enriched by a combination of IMAC and titanium dioxide chromatography with a strategy of sequential elution from IMAC (SIMAC) and analyzed by tandem mass spectrometry. A total of 224 phosphoproteins derived from 1296 spectral counts of phosphopeptides were identified. Among the identified phosphoproteins are flagellar motility proteins such as outer dynein arm, intraflagellar transport proteins as well as signaling molecules including protein kinases, phosphatases, G proteins, and ion channels. Eighty-nine of these phosphoproteins were only detected in shortening flagella, whereas 29 were solely in flagella of steady growing cells, indicating dramatic changes of protein phosphorylation during flagellar shortening. Our data indicates that protein phosphorylation is a key event in flagellar disassembly, and paves the way for further study of flagellar assembly and disassembly controlled by protein phosphorylation.  相似文献   

20.
《The Journal of cell biology》1995,131(6):1517-1527
The Chlamydomonas FLA10 gene was shown to encode a flagellar kinesin- like protein (Walther, Z., M. Vashishtha, and J.L. Hall. 1994. J. Cell Biol. 126:175-188). By using a temperature-sensitive allele of FLA10, we have determined that the FLA10 protein is necessary for both the bidirectional movement of polystyrene beads on the flagellar membrane and intraflagellar transport (IFT), the bidirectional movement of granule-like particles beneath the flagellar membrane (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. (USA). 90:5519-5523). In addition, we have correlated the presence and position of the IFT particles visualized by light microscopy with that of the electron dense complexes (rafts) observed beneath the flagellar membrane by electron microscopy. A role for FLA10 in submembranous or flagellar surface motility is also strongly supported by the immunolocalization of FLA10 to the region between the axonemal outer doublet microtubules and the flagellar membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号