首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The requirement for trophic factors in neurite outgrowth is well established, though their role in synapse formation is yet to be determined. Moreover, the issue of whether the trophic factors mediating neurite outgrowth are also responsible for synapse specification has not yet been resolved. To test whether trophic factors mediating neurite outgrowth and synapse formation between identified neurons are conserved in two molluscan species and whether these developmental processes are differentially regulated by different trophic factors, we used soma-soma and neurite-neurite synapses between identified Lymnaea neurons. We demonstrate here that the trophic factors present in Aplysia hemolymph, although sufficient to induce neurite outgrowth from Lymnaea neurons, do not promote specific synapse formation between excitatory partners. Specifically, the identified presynaptic neuron visceral dorsal 4 (VD4) and postsynaptic neuron left pedal dorsal 1 (LPeD1) were either paired in a soma-soma configuration or plated individually to allow neuritic contacts. Cells were cultured in either Lymnaea brain-conditioned medium (CM) or on poly-L-lysine dishes that were pretreated with Aplysia hemolymph (ApHM), but contained only Lymnaea defined medium (DM; does not promote neurite outgrowth). In ApHM-coated dishes containing DM, Lymnaea neurons exhibited extensive neurite outgrowth, but appropriate excitatory synapses failed to develop between the cells. Instead, inappropriate reciprocal inhibitory synapses formed between VD4 and LPeD1. Similar inappropriate inhibitory synapses were observed in Aplysia hemolymph-pretreated dishes that contained dialyzed Aplysia hemolymph. These inhibitory synapses were novel and inappropriate, because they do not exist in vivo. A receptor tyrosine kinase inhibitor (Lavendustin A) blocked neurite outgrowth induced by both Lymnaea CM and ApHM. However, it did not affect inappropriate inhibitory synapse formation between the neurons. These data demonstrate that neurite outgrowth but not inappropriate inhibitory synapse formation involves receptor tyrosine kinases. Together, our data provide direct evidence that trophic factors required for neurite outgrowth are conserved among two different molluscan species, and that neurite extension and synapse specification between excitatory partners are likely mediated by different trophic factors.  相似文献   

2.
To determine the influence that an appropriate target cell has on the axonal structure of a presynaptic neuron in vivo, we examined the morphologies of individual Aplysia sensory neurons in dissociated cell culture in the presence or absence of identified target motor neurons. We find that an appropriate target, the motor cell L7, regulates the morphological differentiation of the presynaptic sensory neurons in two ways: the target induces the axons of the sensory neurons to develop a more elaborate structure and to form active zones, and the target guides the outgrowth of the sensory neurons. The influence of the appropriate target, L7, on the morphological differentiation of sensory neurons appears to be related to the formation of chemical synaptic connections between the sensory neurons and L7, since sensory neurons co-cultured with an inappropriate target motor neuron do not exhibit a comparable elaboration of their axonal processes.  相似文献   

3.
Cultured adult rat dorsal root ganglion (DRG) neurons were used to study depolarization-induced Ca2+ mobilization and the effects of intracellular Ca2+ depletion on neurite outgrowth. Cytoplasmic and nuclear Ca2+ signals were visualized in dissociated DRG neurons using confocal scanning laser microspcopy and the Ca2+ indicator dye fluo-3. The depolarization-induced Ca2+ signals were highest in neurons during the first few days in culture, prior to neurite extension; during this time nuclear signals exceeded those of the cytoplasm severalfold. After several days in culture, neurons began to arborize, depolarization-induced Ca2+ signals became attenuated, and nuclear signals no longer exceeded those of the cytoplasm. Elevated Ca2+ signals were dependent upon both Ca2+ influx and intact intracellular Ca2+ stores, indicating that the signals are generated by calcuim-induced calcium release (CICR). Thapsigargin, an endoplasmic reticulum Ca2+ ATPase inhibitor, depleted intracellular Ca2+ stores and blocked the induction of the large nuclear Ca2+ signals. Treating DRG neurons briefly with thapsigargin (200 nM for 20 min) shortly after plating reduced subsequent neuritogenesis, impyling that intact Ca2+ stores are necessery for initiating neurite outgrowth. Immunostaining of DRG neurons with antibodies to Ca2+ /calmodulin-dependent kinase II (CaM kinase II) demonstrated that this enzyme is present in the nucleus at early times in culture. These observations are consistent with the idea that CICR triggered by Ca2+ entry subsequent to depolarization may elicit neurite outgrowth by activating nuclear enzymes appropriate for such outgrowth. © 1994 John Wile & Sons, Inc.  相似文献   

4.
The neurotransmitter serotonin has been shown to inhibit neurite outgrowth in specific identified neurons isolated from adult Helisoma. While in vivo experiments on Helisoma embryos have supported the hypothesis that endogenous serotonin regulates neurite outgrowth during embryonic development, direct effects of serotonin on embryonic neurons have not been measured. In the present study, cultures of dissociated embryonic neurons were used to test the direct actions of serotonin on developing embryonic neurons. Serotonin arrested neurite outgrowth in a significant percentage of elongating neurites in a dose-dependent manner. Furthermore, analysis of neurons with stable, nonelongating neurites revealed a novel response. Serotonin caused the reinitiation of neurite outgrowth in a significant percentage of nonelongating neurites. The arrestment of outgrowth and reinitiation of outgrowth occurred in similar percentages of elongating and nonelongating neurites, respectively. Parallel experiments on cultures of dissociated adult neurons were carried out to determine whether serotonin could also induce both inhibitory and stimulatory responses in adult cells. Serotonin arrested neurite outgrowth in a similar percentage of neurites to that observed in cultures of embryonic neurons. In contrast, serotonin did not reinitiate neurite outgrowth in a significant percentage of adult neurites. These data support the hypothesis that serotonin regulates neurite outgrowth in developing embryonic neurons. Furthermore, only some of these regulatory effects appear to be conserved from embryonic to adult neurons.  相似文献   

5.
Porton B  Kao HT 《Neuro-Signals》2003,12(1):45-52
Intracellular signaling pathways involved in neurite outgrowth have been extensively studied in a variety of cell systems. While most of these studies utilized continuous neuronal-like cell lines, fewer studies have been conducted in primary neuronal culture. One primary culture system that has recently been used to dissect the signaling pathways involved in axon guidance consists of spinal neurons derived from embryonic Xenopus laevis. In this study, we used Xenopus to study neurite outgrowth by treating neuronal cultures with pharmacological agents that activate or inhibit various protein kinases or that inhibit protein phosphatases. We found that agents which affected signaling via cAMP-dependent protein kinase, calmodulin, cyclin-dependent kinase 5, or protein phosphatases had effects on Xenopus neurite outgrowth that were similar to those reported in other primary neurons or in neuronal-like cell lines. However, agents which affected protein kinase C signaling had effects on Xenopus neurite outgrowth that were distinct from those reported in neuronal-like cell lines. Although continuous cell lines have several advantages for the dissection of signaling pathways involved in neurodevelopment, these observations underscore the importance of also using primary neurons to examine these pathways.  相似文献   

6.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   

7.
Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple μ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by μ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFβ1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of μ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.  相似文献   

8.
9.
The hypothesis that peripheral, skeletal muscle tissue contains a trophic factor supporting central neurons has recently been investigated in vitro by supplementing the culture medium of spinal cord neurons with muscle extracts and fractions of extract. We extended these studies asking whether or not a trophic factor is present in peripheral nerves, the connecting link between muscle and central neurons via which factors may be translocated from muscle to neurons by the retrograde transport system. Lumbar, 8-day-old chick spinal cords were dissociated into single cells and then cultured in the presence of peripheral nerve extract. Cytosine arabinoside was added to inhibit proliferation of nonneuronal cells. In the presence of nerve extract, spinal cord neurons survived for more than a month, extended numerous neurites, and showed activity of choline acetyltransferase. In the absence of extract, neurons attached and survived for a few days but then died subsequently in less than 10 days. Neurite outgrowth did not occur in the absence of extract. Withdrawal of extract from the medium of established neuronal cultures caused progressive loss of both cells and neurites. Other tissues also contained neuron supporting activity but less than that found in nerve extract. These studies indicate that peripheral nerves contain relatively high levels of spinal cord neuron-directed trophic activity, suggesting translocation of neurotrophic factor from muscle to central target neurons. The neurotrophic factor has long-term (weeks) effects, whereas short-term (days) survival is factor independent.  相似文献   

10.
The nerve growth factor (NGF) family and ciliary neurotrophic factor (CNTF) support survival and/or neurite outgrowth of many cell types. However, it is not known whether the neurite outgrowth induced by neurotrophic factors results in the formation of synapses. We tested NGF and CNTF for their ability to induce neurite outgrowth and synapse formation in vitro by interneurons from the mollusc Lymnaea. Dopaminergic and peptidergic interneurons survived in the absence of neurotrophic factors but exhibited robust outgrowth in response to both NGF and CNTF. Chemical synapses formed between these interneurons and their target neurons cultured in NGF, but synapses were absent in CNTF. Survival, neurite outgrowth, and synaptogenesis are therefore differentially regulated in these neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
12.
Presynaptic calcium currents in squid giant synapse.   总被引:25,自引:1,他引:24       下载免费PDF全文
A voltage clamp study has been performed in the presynaptic terminal of the squid stellate ganglion. After blockage of the voltage-dependent sodium and potassium conductances, an inward calcium current is demonstrated. Given a step-depolarization pulse, this voltage- and time-dependent conductance has an S-shaped onset. At the "break" of the voltage step, a rapid tail current is observed. From these results a kinetic model is generated which accounts for the experimental results and predicts for the time course and amplitude a possible calcium entry during presynaptic action potentials.  相似文献   

13.
The molecular composition of the substrate is of critical importance for neurite extension by isolated identified leech nerve cells in culture. One substrate upon which rapid growth occurs in defined medium is a cell-free extract of extracellular matrix (ECM) that surrounds the leech central nervous system (CNS). Here we report the co-purification of neurite-promoting activity with a laminin-like molecule. High molecular mass proteins from leech ECM purified by gel filtration exhibited increased specific activity for promoting neurite outgrowth. The most active fractions contained three major polypeptide bands of ca. 340, 250 and 220 kDa. Electron microscopy of rotary-shadowed samples showed three macromolecules, one of which had a cross-shaped structure similar to vertebrate laminin. A second six-armed molecule resembled vertebrate tenascin and a third rod-like molecule resembled vertebrate collagen type IV. The most active fractions contained a protein of ca. 1 MDa on non-reducing gels with disulphide-linked subunits of ca. 220 and 340 kDa, with cross-shaped laminin-like molecules. We conclude that a laminin-like molecule represents a major neurite promoting component present in leech ECM. The experiments represent a first step in determining the location of leech laminin within the CNS and assessing its role in neurite outgrowth during development and regeneration.  相似文献   

14.
Gangliosides, in particular the monosialoglycosphingolipids Gtet 1 (GM1), have previously been implicated in the mediation of neuronal rescue and restitutional axonal growth, both in vitro and subsequent to brain and peripheral nerve lesions. In the present study it is shown that the bis-sialosyl gangliosides Gtet2b and Gtet3b, but not the gangliosides Gtet2a and Gtet1, promote the survival of dissociated dorsal root ganglion (DRG) neurons cultured from Embryonic Day (E) 8 chicks (DRG8) almost to the same extent as nerve growth factor (NGF). Ciliary ganglion (CG) neurons from E8 chicks (CG8) and DRG10 neurons were virtually not supported suggesting considerable specificity in terms of neuronal targets and developmental stages being addressed. Moreover, a variety of other lipids including cerebroside (Cb), dipalmitoylphosphatidylcholine (DPPC) and -serine (DPPS), sulfatide (Sf), and sphingomyelin (Sm) were tested for putative survival promoting activity toward chick CG, DRG, and lumbar sympathetic ganglion (SG11) neurons. At the highest concentration employed (2.5 x 10(-5) M), Sm, DPPC, and DPPS maintained between 45 and 65% of the plateau survival with CG8 (maximally supported by ciliary neuronotrophic factor (CNTF], DRG8, and DRG10 neurons, and 30 to 40% with SG11 neurons. Cb supported CG8 neurons at about 55% of the plateau value achieved with CNTF, but had hardly any effect on the other neuron populations tested. Control experiments using highly enriched neurons and serum-free conditions assured that the effects were unlikely to be mediated by serum components or nonneuronal cells. A variety of detergents, in particular Triton X-100, also promoted the survival of CG8 and DRG10 neurons. Ganglioside Gtet1, Sm, and Triton X-100 shifted the NGF titration curve for DRG10 neurons between 6- and 15-fold in a dose-dependent manner suggesting synergisms between NGF and lipids for neuronal maintenance. These results document the neuronotrophic potency of certain gangliosides, a heterogeneous group of structurally unrelated lipids, and detergents. The mechanisms by which these agents modulate neuronal survival still await clarification.  相似文献   

15.
16.
An early event in the formation of the serotonergic synapse by the Retzius (R) onto the pressure-sensitive (P) neurons of the leech is the elimination of an extrasynaptic response to transmitter from sites of contact on the postsynaptic cell. This event during synapse formation is cell-specific in that it is elicited in vitro by contact with the presynaptic R cell but not with other neurons. In the study reported here, we investigated the nature of this interaction between R and P neurons. The loss of the extrasynaptic response of the P cell was elicited by contact with R cells fixed in a mild paraformaldehyde solution, but not by R cells treated with the proteolytic enzyme trypsin prior to fixation. As well, a variety of lectins were assayed for their ability to interfere with synapse formation. The transmitter responses of P cells plated on lectin-coated substrates were unaffected. However, exposure of the R cell to the lectin wheat germ agglutinin (WGA), but not to other lectins, prior to pairing prevented the loss of the extrasynaptic response in contacted P cells and blocked the formation of the R? P synapse in culture. We conclude that recognition by the P cell of the R cell during synapse formation may be mediated by an R cell-specific surface protein which binds wheat germ agglutinin. 1994 John Wiley & Sons, Inc.  相似文献   

17.
Cell surface carbohydrates play an important role in the regulation of neurite outgrowth during neuronal development. We have investigated the actions of the plant lectin concanavalin A (Con A), a carbohydrate-binding protein, on neurite outgrowth from hippocampal pyramidal neurons in primary cell culture. Neurons plated in culture medium containing nanomolar concentrations of Con A have a larger number of primary neurites arising directly from the cell soma than do neurons plated in culture medium alone. Furthermore, Con A causes counterclockwise turning of neurites in over 70% of the cultured neurons. Both of these effects of Con A are blocked by the hapten sugar alpha-methyl-D-mannopyranoside, suggesting that they result from the interaction of Con A with a cell surface carbohydrate. Another lectin with a different sugar specificity, wheat germ agglutinin, does not modulate neurite outgrowth. Analysis of neurite outgrowth using video-enhanced microscopy reveals that the counterclockwise turning is accompanied by directionally biased extension of filopodia from the growth cones of growing neurites. Treatment of the neurons with cytochalasin, which disrupts actin polymerization, eliminates the neurite turning induced by Con A, suggesting that actin microfilaments are involved in directional control of neurite outgrowth.  相似文献   

18.
We present evidence that the neurite out-growth stimulated by the binding of Thy-1 antibodies to PC12 cells is mediated by calcium influx through both N- and L-type calcium channels. PC12 cells cultured on a noncellular substratum in the presence of NGF, or on a cellular substratum in the absence of NGF, responded to soluble Thy-1 antibody by extending longer neurites. The response required bivalent antibody and could be blocked by removing Thy-1 from the surface of PC12 cells with phosphatidylinositol specific phospholipase C. The response could also be blocked by reducing extracellular calcium to 0.25 mM, or by antagonists of L- and N-type calcium channels. Additionally, the response could be fully inhibited by preloading PC12 cells with BAPTA/AM which buffers changes in intracellular calcium. A heterotrimeric G-protein is also implicated in the pathway as the response could be fully inhibited by pertussis toxin. These data suggest that antibody-induced clustering of Thy-1 stimulates neurite outgrowth by activating a second messenger pathway that has previously been shown to underlie cell adhesion molecule (NCAM, N-cadherin, and L1), but not integrin or NGF-dependent neurite outgrowth.  相似文献   

19.
Summary 1. The effects of aluminium (Al) on calcium (Ca) currents were investigated by using the conventional two-electrode voltage clamp technique inHelix pomatia neurons. The peak amplitude, kinetics, and voltage dependence of activation and inactivation of the Ca currents were studied in the presence of 10–5–10–3 M AlCl3, at pH 6.2. Al prolonged the rising phase of the Ca currents and therefore increased the time to peak at each command voltage step used.3. There was no significant influence of Al on the peak amplitude of the Ca currents, but the voltage dependence of the time to peak, activation, and inactivation of the Ca currents shifted to more positive potentials as a consequence of Al treatment.4. The leak currents were not influenced by Al up to 1 mM, which was the maximal dose applied.5. The results support the suggestion that Al may modify the Ca homeostasis and that it exerts a neurotoxic effect, at least in part, by modulation of the Ca current of the neuronal membrane.  相似文献   

20.
Neuronal differentiation in vitro and in vivo involves coordinated changes in the cellular cytoskeleton and protein trafficking processes. I review here recent progress in our understanding of the membrane trafficking aspects of neurite outgrowth of neurons in culture and selective microtubule-based polarized sorting in fully polarized neurons, focusing on the involvement of some key molecules. Early neurite outgrowth appears to involve the protein trafficking machineries that are responsible for constitutive trans-Golgi network (TGN) to plasma membrane exocytosis, utilizing transport carrier generation mechanisms, SNARE proteins, Rab proteins and tethering mechanisms that are also found in non-neuronal cells. This vectorial TGN-plasma membrane traffic is directed towards several neurites, but can be switch to concentrate on the growth of a single axon. In a mature neuron, polarized targeting to the specific axonal and dendritic domains appears to involve selective microtubule-based mechanisms, utilizing motor proteins capable of distinguishing microtubule tracks to different destinations. The apparent gaps in our knowledge of these related protein transport processes will be highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号