首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Src42A is one of the two Src homologs in Drosophila. Src42A protein accumulates at sites of cell-cell or cell-matrix adhesion. Anti-Engrailed antibody staining of Src42A protein-null mutant embryos indicated that Src42A is essential for proper cell-cell matching during dorsal closure. Src42A, which is functionally redundant to Src64, was found to interact genetically with shotgun, a gene encoding E-cadherin, and armadillo, a Drosophila beta-catenin. Immunoprecipitation and a pull-down assay indicated that Src42A forms a ternary complex with E-cadherin and Armadillo, and that Src42A binds to Armadillo repeats via a 14 amino acid region, which contains the major autophosphorylation site. The leading edge of Src mutant embryos exhibiting the dorsal open phenotype was frequently kinked and associated with significant reduction in E-cadherin, Armadillo and F-actin accumulation, suggesting that not only Src signaling but also Src-dependent adherens-junction stabilization would appear likely to be essential for normal dorsal closure. Src42A and Src64 were required for Armadillo tyrosine residue phosphorylation but Src activity may not be directly involved in Armadillo tyrosine residue phosphorylation at the adherens junction.  相似文献   

3.
Cell-cell adhesion regulates processes important in embryonal development, normal physiology, and cancer progression. It is regulated by various mechanisms including tyrosine phosphorylation. We have previously shown that the protein tyrosine phosphatase Pez is concentrated at intercellular junctions in confluent, quiescent monolayers but is nuclear in cells lacking cell-cell contacts. We show here with an epithelial cell model that Pez localizes to the adherens junctions in confluent monolayers. A truncation mutant lacking the catalytic domain acts as a dominant negative mutant to upregulate tyrosine phosphorylation at adherens junctions. We identified beta-catenin, a component of adherens junctions, as a substrate of Pez by a "substrate trapping" approach and by in vitro dephosphorylation with recombinant Pez. Consistent with this, ectopic expression of the dominant negative mutant caused an increase in tyrosine phosphorylation of beta-catenin, demonstrating that Pez regulates the level of tyrosine phosphorylation of adherens junction proteins, including beta-catenin. Increased tyrosine phosphorylation of adherens junction proteins has been shown to decrease cell-cell adhesion, promoting cell migration as a result. Accordingly, the dominant negative Pez mutant enhanced cell motility in an in vitro "wound" assay. This suggests that Pez is also a regulator of cell motility, most likely through its action on cell-cell adhesion.  相似文献   

4.
5.
The adhesion between epithelial cells at adherens junctions is regulated by signaling pathways that mediate the intracellular trafficking and assembly of its core components. Insight into the molecular mechanisms of this is necessary to understand how adherens junctions contribute to the functional organization of epithelial tissues. Here, we demonstrate that in human hepatic HepG2 cells, oncostatin M-p42/44 mitogen-activated protein kinase signaling stimulates the phosphorylation of p27(Kip1) on Ser-10 and promotes cell-cell adhesion. The overexpression of wild-type p27 or a phospho-mimetic p27S10D mutant in HepG2 cells induces a hyper-adhesive phenotype. In contrast, the overexpression of a nonphosphorylatable p27S10A mutant prevents the mobilization of E-cadherin and beta-catenin at the cell surface, reduces basal cell-cell adhesion strength, and prevents the stimulatory effect of oncostatin M on cell-cell adhesion. As part of the underlying molecular mechanism, it is shown that in p27S10A-expressing cells beta-catenin interacts with p27 and is prevented from interacting with E-cadherin. The intracellular retention of E-cadherin and beta-catenin is also observed in hepatocytes from p27S10A knockin mice that express the p27S10A mutant instead of wild-type p27. Together, these data suggest that the formation of adherens junctions in hepatocytes requires Ser-10 in p27.  相似文献   

6.
beta-Catenin has a key role in the formation of adherens junction through its interactions with E-cadherin and alpha-catenin. We show here that interaction of beta-catenin with alpha-catenin is regulated by the phosphorylation of beta-catenin Tyr-142. This residue can be phosphorylated in vitro by Fer or Fyn tyrosine kinases. Transfection of these kinases to epithelial cells disrupted the association between both catenins. We have also examined whether these kinases are involved in the regulation of this interaction by K-ras. Stable transfectants of the K-ras oncogene in intestinal epithelial IEC18 cells were generated which show little alpha-catenin-beta-catenin association with respect to control clones; this effect is accompanied by increased Tyr-142 phosphorylation and activation of Fer and Fyn kinases. As reported for Fer, Fyn kinase is constitutively bound to p120 catenin; expression of K-ras induces the phosphorylation of p120 catenin on tyrosine residues increasing its affinity for E-cadherin and, consequently, promotes the association of Fyn with the adherens junction complex. Yes tyrosine kinase also binds to p120 catenin but only upon activation, and stimulates Fer and Fyn tyrosine kinases. These results indicate that p120 catenin acts as a docking protein facilitating the activation of Fer/Fyn tyrosine kinases by Yes and demonstrate the role of these p120 catenin-associated kinases in the regulation of beta-catenin-alpha-catenin interaction.  相似文献   

7.
Expansive Arp2/3 actin networks and contractile actomyosin networks can be spatially and temporally segregated within the cell, but the networks also interact closely at various sites, including adherens junctions. However, molecular mechanisms coordinating these interactions remain unclear. We found that the SCAR/WAVE complex, an Arp2/3 activator, is enriched at adherens junctions of the leading edge actomyosin cable during Drosophila dorsal closure. Myosin activators were both necessary and sufficient for SCAR/WAVE accumulation at leading edge junctions. The same myosin activators were previously shown to recruit the cytohesin Arf-GEF Steppke to these sites, and mammalian studies have linked Arf small G protein signaling to SCAR/WAVE activation. During dorsal closure, we find that Steppke is required for SCAR/WAVE enrichment at the actomyosin-linked junctions. Arp2/3 also localizes to adherens junctions of the leading edge cable. We propose that junctional actomyosin activity acts through Steppke to recruit SCAR/WAVE and Arp2/3 for regulation of the leading edge supracellular actomyosin cable during dorsal closure.  相似文献   

8.
E-cadherin is thought to mediate intercellular adhesion in the mammalian epidermis and in hair follicles as the adhesive component of adherens junctions. We have tested this role of E-cadherin directly by conditional gene ablation in the mouse. We show that postnatal loss of E-cadherin in keratinocytes leads to a loss of adherens junctions and altered epidermal differentiation without accompanying signs of inflammation. Overall tissue integrity and desmosomal structures were maintained, but skin hair follicles were progressively lost. Tumors were not observed and beta-catenin levels were not strongly altered in the mutant skin. We conclude that E-cadherin is required for maintaining the adhesive properties of adherens junctions in keratinocytes and proper skin differentiation. Furthermore, continuous hair follicle cycling is dependent on E-cadherin.  相似文献   

9.
Although many organ functions rely on epithelial tubes with correct dimensions, mechanisms underlying tube size control are poorly understood. We analyse the cellular mechanism of tracheal tube elongation in Drosophila, and describe an essential role of the conserved tyrosine kinase Src42A in this process. We show that Src42A is required for polarized cell shape changes and cell rearrangements that mediate tube elongation. In contrast, diametric expansion is controlled by apical secretion independently of Src42A. Constitutive activation of Src42A induces axial cell stretching and tracheal overelongation, indicating that Src42A acts instructively in this process. We propose that Src42A-dependent recycling of E-Cadherin at adherens junctions is limiting for cell shape changes and rearrangements in the axial dimension of the tube. Thus, we define distinct cellular processes that independently control axial and diametric expansion of a cylindrical epithelium in a developing organ. Whereas exocytosis-dependent membrane growth drives circumferential tube expansion, Src42A is required to orient membrane growth in the axial dimension of the tube.  相似文献   

10.
Lin CY  Lin CJ  Chen KH  Wu JC  Huang SH  Wang SM 《FEBS letters》2006,580(13):3042-3050
Tumor-associated macrophages play an important role in tumor progression, but whether they exert a tumor-progressive effect remains controversial. Here, we demonstrated that activated macrophage-conditioned medium (AMCM) obtained from RAW macrophages (RAW/AMCM) induced epithelial-mesenchymal transition (EMT) and stimulated the migratory and invasive activities of HepG2 cells, whereas control conditioned media had no effect. Epithelial-cadherin (E-cadherin) and beta-catenin staining patterns were altered at the adherens junctions by RAW/AMCM treatment, with an approximately 50% decrease in E-cadherin and beta-catenin in the cell membrane. Importantly, levels of beta-catenin-associated E-cadherin were also decreased. Following RAW/AMCM treatment, enhanced activation of c-Src was seen prior to increased tyrosine phosphorylation of beta-catenin, and this led to the destabilization of adherens junctions. Pretreatment of HepG2 cells with the Src kinase inhibitor, PP2, completely abolished the effects of RAW/AMCM on the EMT, migration, invasion, and expression and association of E-cadherin and beta-catenin. AMCMs obtained from human THP-1 monocytes and mouse peritoneal macrophages also caused disassembly of the adherens junctions and migration of HepG2 cells. Furthermore, inhibition of the epidermal growth factor receptor (EGFR) with gefitinib partially prevented the downregulation of E-cadherin and beta-catenin at the adherens junctions and migration behavior induced by RAW/AMCM. Our results suggest that activated macrophages have a tumor-progressive effect on HepG2 cells which involves the c-Src- and EGFR-dependent signaling cascades.  相似文献   

11.
Fes and Fes‐related (Fer) protein tyrosine kinases (PTKs) comprise a subfamily of nonreceptor tyrosine kinases characterized by a unique multidomain structure composed of an N‐terminal Fer/CIP4 homology‐Bin/Amphiphysin/Rvs (F‐BAR) domain, a central Src homology 2 (SH2) domain, and a C‐terminal PTK domain. Fer is ubiquitously expressed, and upregulation of Fer has been implicated in various human cancers. The PTK activity of Fes has been shown to be positively regulated by the binding of phosphotyrosine‐containing ligands to the SH2 domain. Here, the X‐ray crystal structure of human Fer SH2 domain bound to a phosphopeptide that has D‐E‐pY‐E‐N‐V‐D sequence is reported at 1.37 å resolution. The asymmetric unit (ASU) contains six Fer‐phosphopeptide complexes, and the structure reveals three distinct binding modes for the same phosphopeptide. At four out of the six binding sites in the ASU, the phosphopeptide binds to Fer SH2 domain in a type I β‐turn conformation, and this could be the optimal binding mode of this phosphopeptide. At the other two binding sites in the ASU, it appears that spatial proximity of neighboring SH2 domains in the crystal induces alternative modes of binding of this phosphopeptide.  相似文献   

12.

Background  

Fps/Fes and Fer are the only two members of a distinct subclass of cytoplasmic protein tyrosine kinases. Fps/Fes was previously implicated in Semaphorin 3A (Sema3A)-induced growth cone collapse signaling in neurons from the dorsal root ganglion (DRG) through interaction with and phosphorylation of the Sema3A receptor component PlexinA1, and members of the collapsin response mediator protein (CRMP) family of microtubule regulators. However, the potential role of the closely related Fer kinase has not been examined.  相似文献   

13.
《The Journal of cell biology》1994,127(6):2061-2069
beta-Catenin is involved in the formation of adherens junctions of mammalian epithelia. It interacts with the cell adhesion molecule E- cadherin and also with the tumor suppressor gene product APC, and the Drosophila homologue of beta-catenin, armadillo, mediates morphogenetic signals. We demonstrate here that E-cadherin and APC directly compete for binding to the internal, armadillo-like repeats of beta-catenin; the NH2-terminal domain of beta-catenin mediates the interaction of the alternative E-cadherin and APC complexes to the cytoskeleton by binding to alpha-catenin. Plakoglobin (gamma-catenin), which is structurally related to beta-catenin, mediates identical interactions. We thus show that the APC tumor suppressor gene product forms strikingly similar associations as found in cell junctions and suggest that beta-catenin and plakoglobin are central regulators of cell adhesion, cytoskeletal interaction, and tumor suppression.  相似文献   

14.
Echinoid is an immunoglobulin domain-containing transmembrane protein that modulates cell-cell signaling by Notch and the EGF receptors. We show that, in the Drosophila wing disc epithelium, Echinoid is a component of adherens junctions that cooperates with DE-Cadherin in cell adhesion. Echinoid and beta-catenin (a DE-Cadherin interacting protein) each possess a C-terminal PDZ domain binding motif that binds to Bazooka/PAR-3; these motifs redundantly position Bazooka to adherens junctions. Echinoid also links to actin filaments by binding to Canoe/AF-6/afadin. Moreover, interfaces between Echinoid- and Echinoid+ cells, like those between DE-Cadherin- and DE-Cadherin+ cells, are deficient in adherens junctions and form actin cables. These characteristics probably facilitate the strong sorting behavior of cells that lack either of these cell-adhesion molecules. Finally, cells lacking either Echinoid or DE-Cadherin accumulate a high density of the reciprocal protein, further suggesting that Echinoid and DE-Cadherin play similar and complementary roles in cell adhesion.  相似文献   

15.
16.
Snake venom metalloproteinases (SVMPs) are structurally and functionally similar to matrix metalloproteinases (MMPs). We have previously demonstrated that a SVMP, named gaminelysin, can induce endothelial cell apoptosis [Biochem J. 357 (2001) 719]. In this study, the action mechanism of graminelysin in causing endothelial cell apoptosis was further investigated. We showed that the apoptosis was initiated with cell shape change and extracellular matrix degradation and occurred before cell detachment. Cleaved forms of MMP-2 might act in concert with graminelysin to cause apoptosis. During apoptosis, adherens junctions, including VE-cadherin and beta- and gamma-catenin were cleaved and alpha-catenin was decreased. VE-cadherin and beta-catenin at cell periphery were decreased and the discontinuity in alignment was found as observed with immunofluorescence microscopy. This was accompanied with a diffuse beta-catenin staining in the cytoplasm and a decreased F-actin stress fibers in some rounded cells. The decrease of VE-cadherin and beta-catenin in Triton-insoluble fractions confirmed that the association of adherens junctions with actin cytoskeleton was altered during apoptosis. Graminelysin-induced cleavage in adherens junctions was paralleled with the changes in paracellular permeability. We also detected the activation of caspase-3 and the decrease of Bcl-2/Bax ratio during apoptosis. However, caspase inhibitors showed differential effects in blocking the cleavage of PARP, adherens junctions, and DNA fragmentation. Taken together, the data presented suggest that metalloproteinase can control cell fates via the degradation of matrix proteins, the change of cell shape, and the cleavage of adherens junctions.  相似文献   

17.
E-cadherins play an essential role in maintaining epithelial polarity by forming Ca2+-dependent adherens junctions between epithelial cells. Here, we report that Ca2+ depletion induces E-cadherin ubiquitination and lysosomal degradation and that Cdc42 plays an important role in regulating this process. We demonstrate that Ca2+ depletion induces activation of Cdc42. This in turn up-regulates epidermal growth factor receptor (EGFR) signaling to mediate Src activation, leading to E-cadherin ubiquitination and lysosomal degradation. Silencing Cdc42 blocks activation of EGFR and Src induced by Ca2+ depletion, resulting in a reduction in E-cadherin degradation. The role of Cdc42 in regulating E-cadherin ubiquitination and degradation is underscored by the fact that constitutively active Cdc42(F28L) increases the activity of EGFR and Src and significantly enhances E-cadherin ubiquitination and lysosomal degradation. Furthermore, we found that GTP-dependent binding of Cdc42 to E-cadherin is critical for Cdc42 to induce the dissolution of adherens junctions. Our data support a model that activation of Cdc42 contributes to mesenchyme-like phenotype by targeting of E-cadherin for lysosomal degradation.  相似文献   

18.
The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse cytoplasmic localization, but in addition it showed distinct accumulations in cytoplasmic vesicles as well as in a perinuclear region consistent with the Golgi. This localization was very similar to that of TGN38, a known marker of the trans Golgi. The localization of Fps/Fes and TGN38 were both perturbed by brefeldin A, a fungal metabolite that disrupts the Golgi apparatus. Fps/Fes was also found to colocalize to various extents with several Rab proteins, which are members of the monomeric G-protein superfamily involved in vesicular transport between specific subcellular compartments. Using Rabs that are involved in endocytosis (Rab5B and Rab7) or exocytosis (Rab1A and Rab3A), we showed that Fps/Fes is localized in both pathways. These results suggest that Fps/Fes may play a general role in the regulation of vesicular trafficking.  相似文献   

19.
Tyrosine protein kinases and spermatogenesis: truncation matters   总被引:1,自引:0,他引:1  
Protein phosphorylation on serine/threonine or tyrosine residues represents a significant regulatory mechanism in signal transduction during spermatogenesis, oogenesis, and fertilization. There are several families of tyrosine protein kinases operating during spermatogenesis: the Src family of tyrosine protein kinases; the Fujinami poultry sarcoma/feline sarcoma (Fps/Fes) and Fes-related protein (Fer) subfamily of non-receptor proteins; and c-kit, the transmembrane tyrosine kinase receptor that belongs to the family of the PDGF receptor. A remarkable characteristic is the coexistence of full-length and truncated tyrosine kinases in testis. Most of the truncated forms are present during spermiogenesis. Examples include the truncated forms of Src tyrosine kinase hematopoietic cell kinase (Hck), FerT, and tr-kit. A feature of FerT and tr-kit is the kinase domain that ensures the functional properties of the truncated protein. FerT, a regulator of actin assembly/disassembly mediated by cortactin phosphorylation, is present in the acroplaxome, a cytoskeletal plate containing an F-actin network and linking the acrosome to the spermatid nuclear envelope. This finding suggests that Fer kinase represents one of the tyrosine protein kinases that may contribute to spermatid head shaping. The c-kit ligand, stem cell factor (SCF), which induces c-kit dimerization and autophosphorylation, exists as both membrane-associated and soluble. Although tyrosine protein kinases are prominent in spermatogenesis, a remarkable observation is the paucity of phenotypic alterations in spermatogenic cells in male mice targeted with Fer kinase-inactivating mutation. It is possible that the redundant functions of the tyrosine protein kinase pool present during spermatogenesis may explain the limited phenotypes of single mutant mice. The production of compound and viable mutant mice, lacking the expression of two or more tyrosine kinases, may shed light on this intriguing issue.  相似文献   

20.
《The Journal of cell biology》1996,134(5):1283-1300
Armadillo, the Drosophila homologue of vertebrate beta-catenin, plays a pivotal role both in Wingless signaling and in assembly of adherens junctions. We performed the first in vivo structure-function study of an adherens junction protein, by generating and examining a series of Armadillo mutants in the context of the entire animal. We tested each mutant by assaying its biological function, its ability to bind proteins that normally associate with Armadillo in adherens junctions, its cellular localization, and its pattern of phosphorylation. We mapped the binding sites for DE-cadherin and alpha-catenin. Although these bind to Armadillo independently of each other, binding of each is required for the function of adherens junctions. We identified two separate regions of Armadillo critical for Wingless signaling. We demonstrated that endogenous Armadillo accumulates in the nucleus and provide evidence that it may act there in transducing Wingless signal. We found that the Arm repeats, which make up the central two-thirds of Armadillo, differ among themselves in their functional importance in different processes. Finally, we demonstrated that Armadillo's roles in adherens junctions and Wingless signaling are independent. We discuss the potential biochemical role of Armadillo in each process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号