首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
3.
4.
5.
Activated T cells undergo apoptosis when the Fas-antigen (APO-1, CD95) is ligated by Fas Ligand (FasL) or agonistic anti-Fas antibodies. Repeated stimulation of T lymphocytes via the TCR/CD3-complex induces activation-induced cell death (AICD) associated with FasL surface expression. FasL binding to Fas molecules triggers the Fas-dependent death signaling cascade. Since it is still controversial whether Fas-induced cell death is associated with tyrosine kinase activity, we investigated the tyrosine kinase activation requirements in anti-Fas antibody-induced cell death and AICD in human T cell clones. We report that cell death triggered by anti-Fas antibody is not accompanied by an increase in tyrosine phosphorylation and cannot be blocked by inhibitors of protein tyrosine kinases (PTK). Under the same conditions, AICD of T cell clones is clearly associated with tyrosine kinase activation. In fact, semiquantitative RT-PCR analysis of FasL mRNA expression triggered in T cell clones via the TCR/CD3-complex revealed that tyrosine phosphorylation is required for functional FasL mRNA and surface expression.  相似文献   

6.
7.
Nonreceptor protein tyrosine kinases and associated substrates play a pivotal role in Ag receptor stimulation of resting cells and in the initiation of activation-induced cell death (AICD) of preactivated T cells. CD4-associated p56lck has been implicated not only in the activation of primary T cells, but also in the inhibition of T cell responses. We have previously shown that CD4+ T cell clones can be rescued from AICD when surface CD4 is engaged before the TCR stimulus. In this study, we show that prevention of AICD is associated with a CD4-dependent inhibition of TCR-triggered tyrosine phosphorylation of the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) and Vav. We provide evidence for a SLP-76 interaction with Src homology 3 domains of p56lck and identify amino acids 185-194 of SLP-76 as relevant docking site. In view of the multiple functions of p56lck and SLP-76/Vav in the initiation of TCR/CD3/CD4 signaling, we propose a model for the CD4-dependent inhibition of TCR signaling and AICD of preactivated T cells. Our data suggest that preformed activation complexes of adapter proteins and enzymes in the vicinity of the CD4/p56lck complex are no longer available for the TCR signal when CD4 receptors are engaged before TCR stimulation.  相似文献   

8.
9.
Activation-induced cell death (AICD) plays a critical role in the maintenance of homeostasis and peripheral tolerance in the immune system, and is mediated by Fas ligand (FasL) expression and the interaction between Fas and FasL. In the present study, we examined the role of the ubiquitin-proteasome system in AICD using T cell hybridoma N3-6-71 cells. The peptidyl aldehyde proteasome inhibitor carbobenzoxyl-Ile-Glu(O-t-butyl)-Ala-leucinal (PSI) blocked T cell receptor (TCR) stimulation-induced apoptosis in the T cell hybridoma. Fas and FasL gene expression and mouse FasL promoter activity following TCR stimulation were suppressed by PSI pretreatment. Deletion or point mutation of the kappaB site in the FasL promoter region did not suppress inducible FasL promoter activity effectively. PSI blocked extracellular signal-regulated kinase (ERK) activity induced by TCR stimulation, but had no effect on c-jun N-terminal kinase activation. ERK activation was essential for FasL expression and AICD. The initial tyrosine phosphorylation steps following TCR stimulation, i.e., phosphorylation of CD3zeta and Vav, were not altered by PSI. These data suggest that the ubiquitin-proteasome system has some regulatory function at an intermediate step between the initial tyrosine phosphorylation steps and ERK activation in AICD.  相似文献   

10.
11.
12.
13.
T cells from cancer patients are often functionally impaired, which imposes a barrier to effective immunotherapy. Most pronounced are the alterations characterizing tumor-infiltrating T cells, which in renal cell carcinomas includes defective NF-kappaB activation and a heightened sensitivity to apoptosis. Coculture experiments revealed that renal tumor cell lines induced a time-dependent decrease in RelA(p65) and p50 protein levels within both Jurkat T cells and peripheral blood T lymphocytes that coincided with the onset of apoptosis. The degradation of RelA/p50 is critical for SK-RC-45-induced apoptosis because overexpression of RelA in Jurkat cells protects against cell death. The loss of RelA/p50 coincided with a decrease in expression of the NF-kappaB regulated antiapoptotic protein Bcl-xL at both the protein and mRNA level. The disappearance of RelA/p50 protein was mediated by a caspase-dependent pathway because pretreatment of T lymphocytes with a pan caspase inhibitor before coculture with SK-RC-45 blocked RelA and p50 degradation. SK-RC-45 gangliosides appear to mediate this degradative pathway, as blocking ganglioside synthesis in SK-RC-45 cells with the glucosylceramide synthase inhibitor, PPPP, protected T cells from tumor cell-induced RelA degradation and apoptosis. The ability of the Bcl-2 transgene to protect Jurkat cells from RelA degradation, caspase activation, and apoptosis implicates the mitochondria in these SK-RC-45 ganglioside-mediated effects.  相似文献   

14.
Peripheral T lymphocytes undergo activation by antigenic stimulation and function in hypoxic areas of inflammation. We demonstrated in CD3-positive human T cells accumulating in inflammatory tissue expression of the hypoxia-inducible factor-1alpha (HIF-1alpha), indicating a role of hypoxia-mediated signals in regulation of T cell function. Surprisingly, accumulation of HIF-1alpha in human T cells required not only hypoxia but also TCR/CD3-mediated activation. Moreover, hypoxia repressed activation-induced cell death (AICD) by TCR/CD3 stimulation, resulting in an increased survival of the cells. Microarray analysis suggested the involvement of HIF-1 target gene product adrenomedullin (AM) in this process. Indeed, AM receptor antagonist abrogated hypoxia-mediated repression of AICD. Moreover, synthetic AM peptides repressed AICD even in normoxia. Taken together, we propose that hypoxia is a critical determinant of survival of the activated T cells via the HIF-1alpha-AM cascade, defining a previously unknown mode of regulation of peripheral immunity.  相似文献   

15.
Mice deficient in the RelA (p65) subunit of NF-kappaB die during embryonic development. Fetal liver (FL) hemopoietic precursors from these mice were used to generate RelA-deficient lymphocytes by adoptive transfer into lethally irradiated mature lymphocyte-deficient recombination-activating gene-1(-/-) mice. Strikingly, RelA(-/-) lymphocyte generation was greatly diminished compared with that of RelA(+/+) lymphocytes. The most dramatic reduction was noticed in the numbers of developing B cells, which were considerably increased when RelA(-/-) FL cells that were also TNFR1 deficient were used. The role of RelA was further investigated in FL-derived developing B cells in vitro. Our results show that RelA is a major component of constitutive and TNF-alpha-induced kappaB site-binding activity in developing B cells, and provide evidence for a direct role of TNF-alpha in killing RelA(-/-) B cells. The absence of RelA significantly reduced mRNA expression of the antiapoptotic genes cellular FLICE-inhibitory protein and Bcl-2. Retroviral transduction of RelA(-/-) B cells with either cFLIP or Bcl-2 significantly reduced TNF-alpha killing. Together, these results indicate that RelA plays a crucial role in regulating developing B cell survival by inhibiting TNF-alpha cytotoxicity.  相似文献   

16.
17.
18.
We have previously shown that the leader proteinase (Lpro) of foot-and-mouth disease virus (FMDV) interferes with the innate immune response by blocking the translation of interferon (IFN) protein and by reducing the immediate-early induction of beta IFN mRNA and IFN-stimulated genes. Here, we report that Lpro regulates the activity of nuclear factor κB (NF-κB). Analysis of NF-κB-dependent reporter gene expression in BHK-21 cells demonstrated that infection with wild-type (WT) virus has an inhibitory effect compared to infection with a genetically engineered mutant lacking the leader coding region. The expression of endogenous NF-κB-dependent genes tumor necrosis factor alpha and RANTES is also reduced in WT virus-infected primary porcine cells. This inhibitory effect is neither the result of a decrease in the level of the mRNA of p65/RelA, a subunit of NF-κB, nor a block on the nuclear translocation of p65/RelA, but instead appears to be a consequence of the degradation of accumulated p65/RelA. Viral Lpro is localized to the nucleus of infected cells, and there is a correlation between the translocation of Lpro and the decrease in the amount of nuclear p65/RelA. By using a recombinant cardiovirus expressing Lpro, we demonstrate that the disappearance of p65/RelA takes place in the absence of any other FMDV product. The observation that Lpro disrupts the integrity of NF-κB suggests a global mechanism by which FMDV antagonizes the cellular innate immune and inflammatory responses to viral infection.  相似文献   

19.
20.
Opposite effects of nuclear factor-kappaB (NF-kappaB) on neuron survival rely on activation of diverse NF-kappaB factors. While p65 is necessary for glutamate-induced cell death, c-Rel mediates prosurvival effects of interleukin-1beta. However, it is unknown whether activation of c-Rel-dependent pathways reduces neuron vulnerability to amyloid-beta (Abeta), a peptide implicated in Alzheimer's disease pathogenesis. We show that neuroprotection elicited by activation of metabotropic glutamate receptors type 5 (mGlu5) against Abeta toxicity depends on c-Rel activation. Abeta peptide induced NF-kappaB factors p50 and p65. The mGlu5 agonists activated c-Rel, besides p50 and p65, and the expression of manganese superoxide dismutase (MnSOD) and Bcl-X(L). Targeting c-Rel expression by RNA interference suppressed the induction of both antiapoptotic genes. Targeting c-Rel or Bcl-X(L) prevented the prosurvival effect of mGlu5 agonists. Conversely, c-Rel overexpression or TAT-Bcl-X(L) addition rescued neurons from Abeta toxicity. These data demonstrate that mGlu5 receptor activation promotes a c-Rel-dependent antiapoptotic pathway responsible for neuroprotection against Abeta peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号