首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vav and vav2 are members of the dbl family of guanine nucleotide exchange factors (GEF) for the rho/rac family of GTP binding proteins. Vav is expressed primarily in hematopoietic cells, while vav2 has a wider tissue distribution. The genomic structure of the human vav proto-oncogene was studied by identifying and sequencing all 27 exons of the gene from overlapping P1 and cosmid clones. The gene spans a 77-kb region on chromosome 19. In contrast, the coding region of vav2 is distributed over 30 exons spanning 227-kb. The overall organization of the exons which encode both proteins was found to be similar. In humans, alternative splicing of exons 6, 16 and 28 generated at least two distinct vav2 mRNA species. Several differences from the original vav cDNA sequence were noted. The most important difference was the identification of amino acid 718 as isoleucine, rather than threonine. This change warrants the reclassification of the vav SH2 domain as a type 3 SH2, instead of a type 2 SH2 as originally proposed by Songyang et al. (Mol. Cell. Biol. 14 (1994) 2777-2785). A series of vav promoter deletions were constructed using the enhanced green fluorescent protein (EGFP) as a reporter gene. A 23-bp segment that included a potential CBF/AML-1 binding site was found to be essential for EGFP expression in U937 cells. The same constructs were not active in HeLa cells, which do not express vav. A potential c-myb DNA binding site within the vav promoter was not required for EGFP expression.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Mechanism of activation of the vav protooncogene   总被引:20,自引:0,他引:20  
vav is a human locus that appears to be specifically expressed in cells of hematopoietic origin regardless of their differentiation lineage. This gene was first identified as a result of its malignant activation during the course of gene transfer assays (Katzav, S., Martin-Zanca, D., and Barbacid, M. EMBO J., 8: 2283-2290, 1989). In this study, we report the isolation of complementary DNA clones containing the entire coding sequence of the mouse vav protooncogene. Antisera raised against a peptide corresponding to a predicted hydrophilic domain have allowed us to identify the product of the vav gene as a 95,000 Da protein. Analysis of the deduced amino acid sequence of p95vav revealed an amino-terminal leucine-rich region not present in the activated vav oncogene. This region consists of an amphipathic helix-loop-helix followed by a leucine zipper, a structure reminiscent of the carboxy-terminal region of myc proteins and the steroid binding domain of nuclear receptors. In vitro mutagenicity studies have indicated that removal of the amphipathic helix-loop-helix is sufficient to activate the transforming potential of human and mouse vav protooncogenes. vav proteins also possess a cysteine-rich domain whose sequence predicts the formation of two putative metal binding-like domains, Cys-X2-Cys-X13-Cys-X2-Cys and His-X2-Cys-X6-Cys-X2-His. Replacement of some of these cysteine and histidine residues completely abolished the transforming activity of vav genes. Further examination of the alignment of cysteine residues in this region revealed an alternative structure, Cys-X2-Cys-X13-Cys-X2-Cys-X7-Cys-X6-Cys, which is reminiscent of the phorbol ester binding domain of protein kinase C. A similar domain has been recently identified in a second enzyme, diacylglycerol kinase. These structural similarities, along with its expression pattern, suggest that the vav protooncogene codes for a new type of signal-transducing molecule that may play an important role in controlling hematopoiesis.  相似文献   

10.
11.
12.
13.
14.
15.
The mechanisms that control the wound-induced expression of the prxC2 gene for horseradish peroxidase (HRP) have been investigated. Analysis of the regulatory properties of 5′-deleted promoters showed that a positive element involved in the response to wounding was located between −307 and −99 bp from the site of initiation of translation. In in vitro binding assays of tobacco nuclear proteins and DNA fragments of prxC2 promoter, the binding site was the Box 1 from −296 to −283 containing the CACGTG motif. To identify the functional role of Box 1, the prxC2 promoter that has been digested from the 5′ end to −289 with a disrupted Box 1 was fused to a reporter gene for β-glucuronidase (GUS). No induction of GUS activity was observed in transgenic tobacco plants with the prxC2(−289)/GUS construct. These data indicated that the expression of prxC2 in response to wounding required the Box 1 sequence from −296 to −283. Furthermore, a tobacco cDNA expression library was screened and a cDNA clone for a protein, designated TFHP-1, that bound specifically to the Box 1 sequence was identified. The putative TFHP-1 protein contains a basic region and leucine zipper (bZip) motif and a helix—loop—helix (HLH) motif. The mRNA for TFHP-1 was abundant in roots and stems, and it was not induced by wounding in leaves. In tobacco protoplasts, antisense TFHP-1 suppressed the expression of prxC2 (−529)/GUS.  相似文献   

16.
17.
Chicken erythrocyte sequence-specific nuclear DNA-binding proteins, which bind to the 5'-flanking DNAseI hypersensitive sites of the erythrocyte chromosomal beta A- and beta H-globin genes, have been fractionated by HPLC gel filtration. Three beta A-globin gene DNA binding activities (to sites A, B and B' (10-12)) were separated. The erythroid precursor cell line HD3 has beta A-globin gene sites B and B' binding activities, but binding to site A is detected only after the HD3 cells are induced to differentiate. The fractionated protein binds to a redefined site B', which contains at its center the globin CACCC consensus sequence. The chromosomal beta H-globin gene has two 5'-flanking DNAseI hypersensitive sites which bracket two sequences (H and H') bound by erythrocyte and HD3 nuclear protein in vitro. The beta H- and beta A-globin gene binding sites (H and B) contain variants of the sequences bound by Nuclear Factor 1 and the TGGCA-binding protein, and their protein binding activity(ies) co-purify after HPLC gel filtration.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号