首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The opioid modulation of histamine release was studied in rat brain slices labeled with L-[3H]histidine. The K(+)-induced [3H]histamine release from cortical slices was progressively inhibited by the preferential kappa-agonists ketocyclazocine, dynorphin A (1-13), Cambridge 20, spiradoline, U50,488H, and U69,593 in increasing concentrations. In contrast, the mu-agonists morphine, morphiceptin, and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) were ineffective as were the preferential delta-agonists [D-Ala2,D-Leu5]enkephalin (DA-DLE) and [D-Pen2,D-Pen5]enkephalin (DPDPE). Nor-binaltorphimine (nor-BNI) and MR 2266, two preferential kappa-antagonists, reversed the inhibitory effect of the various kappa-agonists more potently than did naloxone, with mean Ki values of 4 nM and 25 nM, respectively. The effects of ketocyclazocine and naloxone also were seen in slices of rat striatum, another brain region known to contain histaminergic nerve endings. We conclude that kappa-opioid receptors, presumably located on histaminergic axons, control histamine release in the brain. However, nor-BNI and naloxone failed, when added alone, to enhance significantly [3H]histamine release from cerebral cortex or striatum, and bestatin, an aminopeptidase inhibitor, failed to decrease K(+)-evoked [3H]histamine release. These two findings suggest that under basal conditions these kappa-opioid receptors are not tonically activated by endogenous dynorphin peptides. The inhibition of cerebral histamine release by kappa-agonists may mediate the sedative actions of these agents in vivo.  相似文献   

2.
Somatostatin (SRIF) is a neurotransmitter that produces its multiple effects in the CNS through interactions with membrane-bound receptors. Subtypes of SRIF receptors are found in the CNS that are distinguished by their sensitivities to the cyclic hexapeptide MK-678, such that SRIF1 receptors are sensitive to MK-678 and SRIF2 receptors are insensitive to MK-678. In the present study, we further examined the selectivities of a series of structurally diverse SRIF analogues for SRIF receptor subtypes. SRIF receptors were labeled by 125I-Tyr11-SRIF, which has indistinguishable affinities for SRIF receptor subtypes. The inhibition by MK-678 was incomplete, indicating this peptide is highly selective for a subtype of SRIF receptor that we have termed the SRIF1 receptor. The binding of 125I-MK-678 to SRIF1 receptors was monophasically inhibited by SRIF, the octapeptides (such as SMS-201-995), and the hexapeptides (such as MK-678), consistent with the highly selective labeling of a subtype of SRIF receptor. In contrast, the smaller CGP-23996-like analogues did not inhibit 125I-MK-678 binding to SRIF1 receptors. The binding of 125I-CGP-23996 to SRIF receptors was inhibited by SRIF and the octapeptides with Hill coefficients of less than 1, indicating that 125I-CGP-23996 labels multiple SRIF receptor subtypes. The hexapeptides and CGP-23996-like compounds produced only partial inhibitions of 125I-CGP-23996 binding, which were additive, indicating selective interactions of these compounds with the different receptor subpopulations labeled by 125I-CGP-23996. 125I-Tyr11-SRIF binding and 125I-CGP-23996 binding to SRIF receptors were likewise only partially affected by 100 microM guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a concentration that completely abolishes specific 125I-MK-678 binding to SRIF1 receptors. The component of 125I-CGP-23996 labeling that was sensitive to GTP gamma S was also MK-678 sensitive. Thus, two subpopulations of SRIF receptors exist in the CNS. The SRIF1 receptor is sensitive to cyclic hexapeptides such as MK-678 and to GTP gamma S but insensitive to smaller CGP-23996-like compounds. The SRIF2 receptor is sensitive to the CGP-23996-like compounds and can be selectively labeled by 125I-CGP-23996 in the presence of high concentrations of the hexapeptides or GTP gamma S because, unlike the SRIF1 receptor, the SRIF2 receptor is insensitive to these agents. The SRIF receptor subtype-selective peptide analogues will be useful in the future characterization of the functions mediated by SRIF receptor subtypes in the CNS.  相似文献   

3.
The relationship between the density of the muscarinic receptor in developing rat cerebral cortex and its coupling to phosphoinositide turnover is examined. Tissue slices from rats of various ages were incubated with myo-[2-3H]inositol, and the effect of carbamoylcholine on the release of total inositol phosphates was determined. Binding of [3H]quinuclidinyl benzilate was determined in the same tissue. Although muscarinic receptor density in day-18 embryonic cortex was only 5% of that in the adult, the maximal response of stimulated phosphoinositide turnover to carbamoylcholine (1-10 mM) was at the adult level (i.e., three-fold increase). Comparison of the dependence of the turnover on carbamoylcholine concentration revealed that in neonates, the dose-response curve was shifted to the left, giving a half-maximal effect at concentrations approximately tenfold lower than that in the adult. In addition, the partial muscarinic agonists oxotremorine-2 and bethanechol were both more efficacious in young rats than in adults. The differences could not be accounted for either by alterations in agonist affinity for the receptor or by the presence of "spare" muscarinic receptors. These results indicate that muscarinic receptors in fetal and newborn rat cerebral cortex are more efficiently coupled to stimulation of phosphoinositide turnover than in the adult.  相似文献   

4.
Abstract: The poly(adenylate)[poly(A)] polymerase of rat brain, as in rat liver, is located primarily in the nuclear sap when nuclei are prepared under hypertonic conditions. The enzyme can be released from nuclei in two forms. Form I is prepared by gentle incubation of nuclei at 0°C in hypotonic buffer. It has a Mn optimum of 0.6 mM and a pH optimum between 8 and 9. The ATP concentration curve plateaus at 0.2 mM. The optimal poly(A) primer concentration is 600 μg/ml, which is three times higher than that for the enzyme similarly prepared from liver. The time course of the reaction for the form I enzyme is increasing over the first 40 min and becomes nearly linear thereafter. Form I is not stimulated by either calcium or cyclic nucleotides, but is inhibited by polyamines, pyrophosphate, and high concentrations of GTP. Form II enzyme is prepared by homogenization of nuclei in hypotonic buffer. It has the same ATP and poly(A) optima as the form I enzyme but displays linear kinetics over a 60-min time course. It is slightly stimulated by cGMP and cAMP and strongly inhibited by spermine, sodium pyrophosphate, and high concentrations of GTP.  相似文献   

5.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

6.
Histamine stimulated [3H]methyl group incorporation into phospholipids in crude synaptic membranes of rat whole brain (without cerebellum) in modified Krebs-Ringer solution containing the methyl donor S-adenosyl-[methyl-3H]methionine. The transient increase of [3H]methyl incorporation into lipids peaked within 45 s after addition of histamine (5 or 10 microM) and decreased the basal level in 60 s. Histamine-stimulated [3H]methyl incorporation was increased linearly in a protein concentration-dependent manner. The stimulation was temperature and histamine concentration dependent. TLC analysis of a chloroform/methanol extract indicated that radioactive phospholipids (phosphatidylcholine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidyl-N-monomethylethanolamine) accounted for 60-65% of the total radioactivity recovered. The synaptosomal fraction had the highest specific activity of all the subfractions of crude synaptic membranes (P2). Histamine-induced [3H]methyl incorporation was inhibited by addition of cimetidine (0.01-10 microM) or famotidine (0.01-1.0 microM) in a concentration-dependent manner but not by mepyramine (0.1-10 microM) or diphenhydramine (0.1-10 microM). The stimulation of [3H]methyl incorporation was also observed by addition of impromidine (0.01-10 microM) or dimaprit (1.0 microM-1.0 mM) in a concentration-dependent manner but not by 2-pyridylethylamine (1.0 microM-1.0 mM). These results indicate that phospholipid methylation is induced by histamine acting on H2 receptors in rat brain synaptosomes.  相似文献   

7.
In a previous study we showed that in vivo treatment with pertussis toxin could inhibit some, but not all, effects of adenosine in the rat hippocampus. In this study we investigated the effect of pertussis toxin on the binding of adenosine analogues to A1 receptors in rat brain. Intraventricular injection of pertussis toxin (10 micrograms into the lateral ventricle) did not affect A1 receptor binding in any brain region studied, as evaluated by autoradiography. In vitro treatment of brain sections (10 microns) with pertussis toxin for 5 h, under conditions when greater than 80% of the G proteins were ADP ribosylated, did not alter radioligand binding to adenosine A1 receptors. GTP (10 microM) virtually abolished the high-affinity agonist binding to the A1 receptor. On the other hand, in solubilized cortical membrane preparations, pertussis toxin pretreatment induced a complete shift of the A1 receptors to the low-affinity state. This suggests that the ability of pertussis toxin to affect G proteins coupled to A1 receptors in brain depends not only on the distribution of the toxin but also on the configuration of receptors and G proteins.  相似文献   

8.
Abstract: Oocytes from the frog Xenopus laevis were shown recently to express native nicotinic acetylcholine receptors after injection with purified Torpedo electroplaque membrane vesicles. Injection of Xenopus oocytes with rat cortical or nigral synaptosomes has now been shown to result in the expression of γ-aminobutyric acid type A (GABAA) receptor-mediated Cl currents. Electrophysiological characterization of the responses of these receptors to GABA and other agents revealed that they were incorporated into the oocyte membrane and that they retained their original pharmacological properties, such as sensitivity to Cl channel blockers, benzodiazepines, and general anesthetics. These results suggest that this approach to the expression of heterologous proteins in Xenopus oocytes may facilitate the study of native synaptic proteins derived from brain tissue.  相似文献   

9.
Vertongen, P., S. N. Schiffmann, P. Gourlet and P. Robberecht. Autoradiographic visualization of the receptor subclasses for Vasoactive Intestinal Polypeptide (VIP) in rat brain. Peptides 18(10) 1547–1554, 1997.—Vasoactive Intestinal Polypeptide (VIP) exerts its biological effects through interaction with two high affinity receptors named the VIP1- and the VIP2 receptors. Their messenger RNAs have been mapped in rat brain by in situ hybridization. A cyclic peptide (RO 25-1553) and a secretin analogue ([R16]chicken secretin) were identified as selective agonist peptides for the VIP2- and VIP1 receptors, respectively. The iodinated peptides retained the high affinity and selectivity of the unlabelled peptides and were used for the mapping of each receptor subclass in rat brain. VIP1 receptors were present in the cerebral cortex, the piriform cortex, the claustrum, the caudate-putamen, the dentate gyrus, the lateral amygdaloïd nucleus, the anteroventral thalamic nucleus, the rhomboïd nucleus, the supraoptic nucleus and the choroïd plexus. VIP2 receptors were present in the cerebral cortex, the claustrum, the caudate-putamen, the nucleus accumbens, the lateral septal nuclei, the bed nucleus of the stria terminalis, the basolateral amygdaloïd nucleus, the Ammon’s horn, the thalamic nuclei except some centromedial nuclei, the medial habenula, the suprachiasmatic nucleus, the periventricular nucleus, the mammilary nucleus, the superior colliculus and the choroïd plexus.  相似文献   

10.
The effect of hydrogen ion concentration on ligand binding to muscarinic acetylcholine receptors was studied in membranes isolated from rat brainstem. The binding of [3H]methylscopolamine was constant between pH 7 and 10. The affinity, but not the number, of [3H]methylscopolamine binding sites decreased below pH 7; at pH 4 little binding was detected. When brainstem membranes were incubated at various pH levels from 3 to 11 for 1 h and then returned to pH 8, [3H]methylscopolamine binding affinity was restored to control levels. Carbamylcholine binding affinity was also depressed in media of low pH. However, this decrease was permanent after a 1-h incubation at pH 4 (i.e. carbamylcholine affinity was not restored on raising the pH to 8). The capacity of a guanine nucleotide to affect carbamylcholine was also abolished by a 1-h incubation at pH 4, and was not restored by raising the pH. The guanine nucleotide-dependent regulatory protein may be irreversibly inactivated or dissociated from the receptor at low pH. The receptor's binding subunit, on the other hand, appears to be much less sensitive to hydrogen ion concentration.  相似文献   

11.
4-Aminobutyraldehyde Dehydrogenase Activity in Rat Brain   总被引:2,自引:2,他引:2  
Abstract: An enzyme with NAD+-dependent 4-aminobutyraldehyde dehydrogenase activity was purified about 360-fold from rat brain extract. AMP-Sepharose chromatography was effective in separating the enzyme from other NAD+-dependent aldehyde dehydrogenases included in the extract. The K ms for the substrates NAD+ and 4-aminobutyraldehyde were 4.8 × 10−4 and 8.3 × 10−5 M , respectively. The pH optimum for the enzyme was about 8.0. The ratio of activities toward 4-aminobutyraldehyde, propionaldehyde, succinate semialdehyde, and benzaldehyde was 1.00:0.17:0.24:0.09:0.03 when the activity toward 4-aminobutyraldehyde was set equal to 1.00. The enzyme activity in subcellular fractions of rat brain was localized in cytosol.  相似文献   

12.
Summary Using a somatostatin-gold conjugate of known biological activity, high affinity binding sites for this neuropeptide were visualized at cellular resolution on cultured diencephalic astrocytes and on frozen sections of the rat diencephalon. Binding could be completely suppressed in competition experiments with surplus unlabeled somatostatin. On sections, the ligand was displaced from its binding sites by 10 M guanosine triphosphate indicating a functional significance of the labeled structures. As with the native peptide, a surplus of the analog SMS 201–995 suppressed nearly all staining. The ligand was bound to distinct populations of astrocytes, namely to those in subependymal and perivascular positions, to astrocytes in somatostatin-innervated hypothalamic nuclei in the mid-sagittal plane and to borderline regions of circumventricular organs. A general mismatch between the distribution of somatostatin-immunoreactive terminals and the pattern of binding of the ligand does not exist. This, together with the competition experiments, suggests a functional relationship between the somatostatin-releasing neurons and associated astrocytes.  相似文献   

13.
Quinuclidinyl Benzilate Binding in House Fly Heads and Rat Brain   总被引:1,自引:3,他引:1  
Abstract: House fly heads contain a binding site for 3-quinuclidinyl benzilate (QNB) that is quite similar in pharmacology to the muscarinic acetylcholine receptor of vertebrate tissues. The house fly site binds [3H]QNB reversibly with a K d of 260 PM and Bmax of 1 pmol/g of heads from direct binding measurements. The Kd calculated from the ratio of the dissociation rate constant (2 × 10−4 sec−1) to the association rate constant (2.5 × 106 M−1 Sec−1) was 80 pM. The house fly site binds (-)quinuclidinyl benzilate preferentially, as do classic muscarinic receptors. The binding is also sensitive to other muscarinic antagonists and agonists. Nicotinic and other drugs are no more effective on the house fly site than they are on the rat brain muscarinic receptor itself. These binding studies suggest that the house fly QNB binding site is a muscarinic receptor.  相似文献   

14.
The ontogeny of histaminergic neurotransmission in the rat brain was studied by assessing development of histamine levels in brain regions, along with H-1 receptor binding of [3H]mepyramine and H-1 receptor-mediated cellular events. In the hypothalamus, which is rich in histaminergic innervation, levels of the amine were low at birth, increased sharply at 8 days of age, and reached adult concentrations shortly thereafter; this pattern is typical of most neurotransmitters. In contrast, regions poor in neuronal histamine showed an initially high histamine level and a subsequent decline with development, as is known to occur during general growth of tissues. The developmental profile of H-1 receptor binding sites resembled that of the neuronal histamine pool, and the increases with age resulted from changes in the number of binding sites without alterations in Kd. Cellular responses to H-1 receptor activation were assessed by determining the stimulation of phospholipid turnover evoked by intracisternally administered histamine, a process that has been shown to involve only the neuronal compartment. Again, the developmental profile was superimposable upon that of H-1 receptor binding and that of hypothalamic histamine levels. These studies indicate that ontogeny of histaminergic neurotransmission is a coordinated process, with simultaneous development of neuronal histamine, its key biosynthetic enzyme, and H-1 receptors coupled directly to cellular events.  相似文献   

15.
Rat brain opioid receptors were solubilized with digitonin and a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS). The yield of solubilization was 70-75% with digitonin and 30-35% with CHAPS. Kinetic and equilibrium studies performed from digitonin extracts resulted in KD values comparable with those of the membrane fractions. Two [3H]naloxone binding sites were obtained in the extracts similarly to membrane fractions. The rank order potency of drugs used in the competition experiments did not change during solubilization. The distributions of mu, delta, and kappa opioid receptor binding sites were similar in membrane and digitonin-solubilized fractions (48-50% mu, 35-37% kappa, and 13-17% delta subtypes). The hydrodynamic properties of digitonin- and CHAPS-solubilized preparations were studied by sucrose density gradient centrifugation and Sepharose-6B chromatography. In all cases, two receptor populations were identified with the following parameters: sedimentation coefficients for the digitonin extracts were 9.2S and 13.2S and for CHAPS extract 8S and 15.6S; the Stokes radii were 45 A and 65A for the digitonin extract and 31A and 76A for the CHAPS-solubilized preparation.  相似文献   

16.
Rat brain angiotensin II (Ang II) receptors were solubilized with a yield of 30-40% using the synthetic detergent 3[(3-cholamidopropyl)dimethylammonio)]-1-propanesulfonate. Kinetic analysis employing the high-affinity antagonist 125I-Sar1,Ile8-Ang II indicated that the solubilized receptors exhibited the same properties as receptors present within intact brain membranes. Furthermore, there was a positive correlation (r = 0.99) between the respective pIC50 values of a series of agonist and antagonists competing for 125I-Sar1,Ile8-Ang II labeled binding sites in either solubilized or intact membranes. Moreover, covalent labeling of 125I-Ang II to solubilized receptors with the homo-bifunctional cross-linker disuccinimidyl suberate, followed by gel filtration, revealed one major and one minor binding peak with apparent molecular weights of 64,000 and 115,000, respectively. Two binding proteins of comparable molecular weights (i.e., 112,000 and 60,000) were also identified by covalent cross-linking of 125I-Ang II to solubilized brain membranes followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. In contrast, only the smaller molecular mass binding protein was observed when solubilized membranes were labeled with the antagonist 125I-Sar1,Ile8-Ang II prior to gel filtration, and chromatofocusing of antagonist labeled sites revealed only one peak with an isoelectric point of 6.2. The successful solubilization of these binding sites should facilitate continued investigation of Ang II receptors in the brain.  相似文献   

17.
A1 adenosine receptors were labeled in rat brain sections with the antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and visualized at the light microscopic level using autoradiography. The specific binding of [3H]DPCPX to the sections showed the pharmacological characteristics of A1 adenosine receptors and was accompanied by very low levels of nonspecific binding. Whereas GTP had no significant effect on [3H]DPCPX binding to rat brain membranes, the addition of 100 microM GTP increased the apparent affinity of [3H]DPCPX to tissue sections fivefold (from 1.83 to 0.35 nM), enhancing it to the affinity measured in membranes. However, GTP altered neither the binding capacity nor the distribution of binding sites in tissue sections. It is suggested that a competitive antagonism with endogenous adenosine explains the lower affinity of [3H]DPCPX in the absence of GTP. The autoradiographic pattern of [3H]DPCPX binding was characteristic for A1 adenosine receptors. Distinct labeling of the different layers of the cerebellar cortex was shown by photomicrographs generated with the coverslip technique. In addition, several fiber tracts were found to be labeled. The high selectivity for A1 adenosine receptors and low nonspecific binding of [3H]DPCPX, the ability to produce high-resolution autoradiograms, together with the fact that the effects of endogenous adenosine can be eliminated by the addition of GTP make [3H]DPCPX a very useful tool in the autoradiographic study of A1 adenosine receptors.  相似文献   

18.
19.
Monospecific anti-rat serum alpha-fetoprotein (AFP) IgG was coupled to cyanogen bromide-activated Sepharose-4B (4.5 mg/ml packed volume of gel) to yield an immunoaffinity matrix. The immunoaffinity column was used to isolate AFP from feto-neonatal rat brain. The purified AFP was immunologically and electrophoretically similar to serum AFP. It yielded a single band with a molecular weight of 70,000 on sodium dodecyl sulphate polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis of the protein under nondenaturing conditions yielded two charge variants of AFP, reminiscent of AFP from feto-neonatal rat serum. The AFP was observed to bind estradiol with Ka = 5.8 X 10(8) M -1 and 1.3 X 10(8) M -1 by dextran-coated charcoal adsorption and Sephadex gel filtration techniques, respectively. Newborn rat brain cells linearly incorporated [14C]leucine into immunoprecipitable AFP during 6 h in culture. It is, therefore, concluded that feto-neonatal rat brain contains AFP similar to that present in fetal serum and that it may arise in brain as a result of its in situ synthesis.  相似文献   

20.
Studies on Polyphosphoinositides in Developing Rat Brain   总被引:5,自引:5,他引:0  
Polyphosphoinositides in rat brain exist in two forms: the metabolically active form that is readily attacked by the polyphosphoinositide phosphohydrolases, and the inert form that is attacked by the enzymes at a slower rate. The two pools continue to increase even during the postweaning period, suggesting a role in glial as well as myelin development apart from their role in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号