共查询到20条相似文献,搜索用时 0 毫秒
1.
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid (AA), are potent and stereospecific activators of cardiac ATP-sensitive K(+)(K(ATP)) channels. EETs activate K(ATP) channels by reducing channel sensitivity to ATP. In this study, we determined the direct effects of EETs on the binding of ATP to K(ATP) channel protein. A fluorescent ATP analog, 2,4,6-trinitrophenyl (TNP)-ATP, which increases its fluorescence emission significantly upon binding with proteins, was used for binding studies with glutathione-S-transferase (GST) Kir6.2 fusion proteins. TNP-ATP bound to GST fusion protein containing the C-terminus of Kir6.2 (GST-Kir6.2C), but not to the N-terminus of Kir6.2, or to GST alone. 11,12-EET (5 muM) did not change TNP-ATP binding K(D) to GST-Kir6.2C, but B(max) was reduced by half. The effect of 11,12-EET was dose-dependent, and 8,9- and 14,15-EETs were as effective as 11,12-EET in inhibiting TNP-ATP binding to GST-Kir6.2C. AA and 11,12-dihydroxyeicosatrienoic acid (11,12-DHET), the parent compound and metabolite of 11,12-EET, respectively, were not effective inhibitors of TNP-ATP binding to GST-Kir6.2C, whereas the methyl ester of 11,12-EET was. These findings suggest that the epoxide group in EETs is important for modulation of ATP binding to Kir6.2. We conclude that EETs bind to the C-terminus of K(ATP) channels, inhibiting binding of ATP to the channel. 相似文献
2.
Konstas AA Dabrowski M Korbmacher C Tucker SJ 《The Journal of biological chemistry》2002,277(24):21346-21351
The precise molecular identity of the renal ATP-regulated secretory K+ channel is still a matter of some controversy. The inwardly rectifying K+ channel, Kir1.1 (ROMK) appears to form the pore of the channel, and mutations in Kir1.1 are responsible for Bartter syndrome. The native channel is sensitive to inhibition by the sulfonylurea glibenclamide, and it has been proposed that an accessory protein is required to confer glibenclamide sensitivity to Kir1.1. Several recent studies have suggested that the native channel is composed of the splice variant Kir1.1b (ROMK2) and the sulfonylurea receptor isoform SUR2B and that there is a direct physical interaction between these subunits. In this study, we have monitored the interaction between Kir1.1b and SUR2B. We find that SUR2B reaches the plasma membrane when coexpressed with Kir6.1 or Kir6.2 but not when coexpressed with Kir1.1b. Furthermore, we find that Kir1.1b exhibits an intrinsic sensitivity to inhibition by glibenclamide with an affinity similar to the native channel. These results demonstrate that SUR2B does not traffic to the membrane in the presence of Kir1.1b and is not required to confer glibenclamide sensitivity to Kir1.1b. This has important implications for the presumed structure of the renal ATP-regulated secretory K+ channel. 相似文献
3.
Zhou M He HJ Suzuki R Tanaka O Sekiguchi M Yasuoka Y Kawahara K Itoh H Abe H 《European journal of histochemistry : EJH》2007,51(1):43-51
ATP-sensitive K+ (K(ATP)) channels in kidney are considered to play roles in regulating membrane potential during the change in intracellular ATP concentration. They are composed of channel subunits (Kir6.1, Kir6.2), which are members of the inwardly rectifying K+ channel family, and sulphonylurea receptors (SUR1, SUR2A and SUR2B), which belong to the ATP-binding cassette superfamily. In the present study, we have investigated the expression and localization of Kir6.1 in rat kidney with Western blot analysis, immunohistochemistry, in situ hybridization histochemistry, and immunoelectron microscopy. Western blot analysis showed that Kir6.1 was expressed in the mitochondria and microsome fractions of rat kidney and very weakly in the membrane fractions. Immunohistochemistry revealed that Kir6.1 was widely distributed in renal tubular epithelial cells, glomerular mesangial cells, and smooth muscles of blood vessels. In immunoelectron microscopy, Kir6.1 is mainly localized in the mitochondria, endoplasmic reticulum (ER), and very weakly in cell membranes. Thus, Kir6.1 is contained in the kidney and may be a candidate of mitochondrial K(ATP) channels. 相似文献
4.
Xiaofan Li Andriy Anishkin Hansi Liu Damian B. van Rossum Sree V. Chintapalli Jessica K. Sassic David Gallegos Kendra Pivaroff-Ward Timothy Jegla 《The Journal of general physiology》2015,146(5):357-374
Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant. 相似文献
5.
Assembly of ROMK1 (Kir 1.1a) inward rectifier K+ channel subunits involves multiple interaction sites. 总被引:1,自引:0,他引:1 下载免费PDF全文
The ROMK1 (Kir 1.1a) channel is formed by a tetrameric complex of subunits, each characterized by cytoplasmic N- and C-termini and a core region of two transmembrane helices flanking a pore-forming segment. To delineate the general regions mediating the assembly of ROMK1 subunits we constructed epitope-tagged N-terminal, C-terminal, and transmembrane segment deletion mutants. Nonfunctional subunits with N-terminal, core region, and C-terminal deletions had dominant negative effects when coexpressed with wild-type ROMK1 subunits in Xenopus oocytes. In contrast, coexpression of these nonfunctional subunits with Kv 2.1 (DRK1) did not suppress Kv 2.1 currents in control oocytes. Interactions between epitope-tagged mutant and wild-type ROMK1 subunits were studied in parallel by immunoprecipitating [35S]-labeled oocyte membrane proteins. Complexes containing both wild-type and mutant subunits that retained H5, M2, and C-terminal regions were coimmunoprecipitated to a greater extent than complexes consisting of wild-type and mutant subunits with core region and/or C-terminal deletions. The present findings are consistent with the hypothesis that multiple interaction sites located in the core region and cytoplasmic termini of ROMK1 subunits mediate homomultimeric assembly. 相似文献
6.
Kir 5.1 is a member of the inward rectifier potassium channel superfamily which does not form functional channels when expressed by itself in Xenopus laevis oocytes. rt-PCR reveals high levels of Kir 5.1 mRNA expression in testis but the function of this channel remains unknown. To determine the cell-specific expression of this channel in the testis we raised a polyclonal antibody against an external epitope of Kir 5.1 and tested its specificity in Xenopus oocytes expressing several cloned Kir subunits. Strong immunoreactivity for Kir 5.1 was found in seminiferous tubules of rat testis and, particularly, in spermatogonia, primary and secondary spermatocytes, spermatids and in the head and body of spermatozoa. The intensity of Kir 5.1 immunofluorescence, quantified using laser scanning microscopy, increased with age at every stage in the development of sperm from spermatogonia and reached a peak in 60-day-old rats. In contrast, the immunofluorescence decreased in 90-day-old animals and was detected mostly in spermatozoa. The results demonstrate that Kir 5.1 expression in the testis is localised to cells involved in spermatogenesis, showing a temporal pattern of expression during sexual maturity. 相似文献
7.
B A Boggs A M Minotti L M Loeb R Cook F Cabral 《The Journal of biological chemistry》1988,263(28):14566-14573
The generation of Chinese hamster ovary cell lines that express assembly defective forms of beta-tubulin were isolated using selections based on reversion of conditional lethal or drug resistance phenotypes. Two such cell lines, D2 and 6H3, were chosen for further characterization because they contain beta-tubulin polypeptides that exhibit decreases in apparent molecular weight on two-dimensional gel electrophoresis. Analysis of the nucleic acid from these cell lines using both Southern and Northern procedures suggests a deletion in one of the beta-tubulin genes in each cell line. Localization of the missing sequence in D2 was first determined by tryptic peptide mapping by high performance liquid chromatography. Subsequently, the assignment was confirmed by constructing appropriate subclones of a wild type Chinese hamster ovary beta-tubulin cDNA for Southern analysis to demonstrate a failure to recognize characteristic hybridization patterns of the mutant tubulin gene. In the other revertant, 6H3, the deletion was detected on a Northern blot by differential hybridization of a 3' fragment of the cDNA to the beta-tubulin messages. The results indicate that D2 has an internal deletion whose approximate limits extend from amino acid residues 250 through 345. Cell line 6H3 has a deletion that begins near amino acid residue 330 and extends into the 3'-untranslated region of the gene. 相似文献
8.
Konstas AA Koch JP Tucker SJ Korbmacher C 《The Journal of biological chemistry》2002,277(28):25377-25384
The epithelial sodium channel (ENaC) and the secretory potassium channel (Kir1.1/ROMK) are expressed in the apical membrane of renal collecting duct principal cells where they provide the rate-limiting steps for Na(+) absorption and K(+) secretion. The cystic fibrosis transmembrane conductance regulator (CFTR) is thought to regulate the function of both ENaC and Kir1.1. We hypothesized that CFTR may provide a regulatory link between ENaC and Kir1.1. In Xenopus laevis oocytes co-expressing both ENaC and CFTR, the CFTR currents were 3-fold larger than those in oocytes expressing CFTR alone due to an increased expression of CFTR in the plasma membrane. ENaC was also able to increase Kir1.1 currents through an increase in surface expression, but only in the presence of CFTR. In the absence of CFTR, co-expression of ENaC was without effect on Kir1.1. ENaC-mediated CFTR-dependent up-regulation of Kir1.1 was reduced with a Liddle's syndrome mutant of ENaC. Furthermore, ENaC co-expressed with CFTR was without effect on the closely related K(+) channel, Kir4.1. We conclude that ENaC up-regulates Kir1.1 in a CFTR-dependent manner. CFTR may therefore provide the mechanistic link that mediates the coordinated up-regulation of Kir1.1 during the stimulation of ENaC by hormones such as aldosterone or antidiuretic hormone. 相似文献
9.
Claydon TW Makary SY Dibb KM Boyett MR 《The Journal of biological chemistry》2003,278(50):50654-50663
The Kir3.1/Kir3.4 channel is activated by Gbetagamma subunits released on binding of acetylcholine to the M2 muscarinic receptor. A mechanism of channel opening, similar to that for the KcsA and Shaker K+ channels, has been suggested that involves translocation of pore lining transmembrane helices and the opening of an intracellular gate at the "bundle crossing" region. However, in the present study, we show that an extracellular gate at the selectivity filter is critical for agonist activation of the Kir3.1/Kir3.4 channel. Increasing the flexibility of the selectivity filter, by disrupting a salt bridge that lies directly behind the filter, abolished both selectivity for K+ and agonist activation of the channel. Other mutations within the filter that altered selectivity also altered agonist activation. In contrast, mutations within the filter that did not affect selectivity had little if any effect on agonist activation. Interestingly, mutation of bulky side chain phenylalanine residues at the bundle crossing also altered both agonist activation and selectivity. These results demonstrate a significant correlation between agonist activation and selectivity, which is determined by the selectivity filter, and suggests, therefore, that the selectivity filter may act as the agonist-activated gate in the Kir3.1/Kir3.4 channel. 相似文献
10.
Lancaster MK Dibb KM Quinn CC Leach R Lee JK Findlay JB Boyett MR 《The Journal of biological chemistry》2000,275(46):35831-35839
Mechanisms and residues responsible for slow activation and Ba(2+) block of the cardiac muscarinic K(+) channel, Kir3.1/Kir3.4, were investigated using site-directed mutagenesis. Mutagenesis of negatively charged residues located throughout the pore of the channel (in H5, M2, and proximal C terminus) reduced or abolished slow activation. The strongest effects resulted from mutagenesis of residues in H5 close to the selectivity filter; mutagenesis of residues in M2 and proximal C terminus equivalent to those identified as important determinants of the activation kinetics of Kir2.1 was less effective. In giant patches, slow activation was present in cell-attached patches, lost on excision of the patch, and restored on perfusion with polyamine. Mutagenesis of residues in H5 and M2 close to the selectivity filter also decreased Ba(2+) block of the channel. A critical residue for Ba(2+) block was identified in Kir3.4. Mutagenesis of the equivalent residue in Kir3.1 failed to have as pronounced an effect on Ba(2+) block, suggesting an asymmetry of the channel pore. It is concluded that slow activation is principally the result of unbinding of polyamines from negatively charged residues close to the selectivity filter of the channel and not an intrinsic gating mechanism. Ba(2+) block involves an interaction with the same residues. 相似文献
11.
Graciela E. Santillán Marisa J. Sandoval Yuti Chernajovsky Patricia L. Orchansky 《Molecular and cellular biochemistry》1992,110(2):181-191
A number of cell-surface proteins are anchored in plasma membranes by a glycosylated phosphatidylinositol (PI) moiety that
is covalently attached to the carboxyl-terminal amino acid of the mature protein. We have previously reported the construction
of a cDNA clone of a truncated Platelet-derived growth factor (PDGF) receptor that consists of the extracellular domain without
the transmembrane and cytoplasmic domains. In the construction of the vector, a sequence of 51 base pairs (bp) from the 3′-untranslated
region of the receptor cDNA was linked in frame with the external domain coding sequence. The truncated receptor protein with
the peptide VTSGHCHEERVDRHDGE fused to its carboxyl terminus was covalently attached to the membrane by a PI linkage and it
was released by phosphatidylinositol specific-phospholipase C (PI-PLC). When the 51 bp sequence was deleted, the external
domain receptor protein was secreted into the media. To determine whether the PI linkage of the protein was due to the 17
amino acids added, the peptide was fused to the carboxyl terminus of the secreted protein human Interferon-β (hu-IFN-β). Chinese
hamster ovary (CHO) cells transfected with the hu-IFN-β cDNA secreted the protein to theconditioned media, whereas CHO cells
transfected with the carboxyl terminus modified-hu-IFN-β cDNA did not secrete detectable levels of protein. CHO cells expressing
the carboxyl terminus modified-hu-IFN-β were treated with PI-PLC, the media and cell lysates were analyzed by SDS-PAGE after
immunoprecipitation with antibodies against hu-IFN-β. The modified protein is anchored to the plasma membrane by a PI linkage
and it is specifically released by PI-PLC, whereas a control preparation of CHO cells expressing wild type hu-IFN-β does not
show the same pattern. The 17 amino acid peptide fused to the carboxyl terminus of IFN-β directs attachment of a PI anchor
and targets the fusion protein to the plasma membrane. 相似文献
12.
The ATP-sensitive potassium (K(ATP)) channel links cell metabolism to membrane excitability. Intracellular ATP inhibits channel activity by binding to the Kir6.2 subunit of the channel, but the ATP binding site is unknown. Using cysteine-scanning mutagenesis and charged thiol-modifying reagents, we identified two amino acids in Kir6.2 that appear to interact directly with ATP: R50 in the N-terminus, and K185 in the C-terminus. The ATP sensitivity of the R50C and K185C mutant channels was increased by a positively charged thiol reagent (MTSEA), and was reduced by the negatively charged reagent MTSES. Comparison of the inhibitory effects of ATP, ADP and AMP after thiol modification suggests that K185 interacts primarily with the beta-phosphate, and R50 with the gamma-phosphate, of ATP. A molecular model of the C-terminus of Kir6.2 (based on the crystal structure of Kir3.1) was constructed and automated docking was used to identify residues interacting with ATP. These results support the idea that K185 interacts with the beta-phosphate of ATP. Thus both N- and C-termini may contribute to the ATP binding site. 相似文献
13.
14.
Pochynyuk O Staruschenko A Tong Q Medina J Stockand JD 《The Journal of biological chemistry》2005,280(45):37565-37571
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions. 相似文献
15.
Keat-Eng Ng Sarah Schwarzer Michael R. Duchen Andrew Tinker 《The Journal of membrane biology》2010,234(2):137-147
Our aim was to determine the subcellular localization and functional roles of the KATP channel subunit Kir6.1 in intracellular membranes. Specifically, we focused on the potential role of Kir6.1 as a subunit of the mitochondrial ATP-sensitive K+ channel. Cell imaging showed that a major proportion of heterologously expressed Kir6.1-GFP and endogenously expressed Kir6.1 was distributed in the endoplasmic reticulum with little in the mitochondria or plasma membrane. We used pharmacological and molecular tools to investigate the functional significance of this distribution. The KATP channel opener diazoxide increased reactive oxygen species production, and glibenclamide abolished this effect. However, in cells lacking Kir6.1 or expressing siRNA or dominant negative constructs of Kir6.1, the same effect was seen. Ca2+ handling was examined in the muscle cell line C2C12. Transfection of the dominant negative constructs of Kir6.1 significantly reduced the amplitude and rate of rise of [Ca2+] c transients elicited by ATP. This study suggests that Kir6.1 is located in the endoplasmic reticulum and plays a role in modifying Ca2+ release from intracellular stores. 相似文献
16.
17.
The regulation of M-type (KCNQ [Kv7]) K+ channels by phosphatidylinositol 4,5-bisphosphate (PIP2) has perhaps the best correspondence to physiological signaling, but the site of action and structural motif of PIP2 on these channels have not been established. Using single-channel recordings of chimeras of Kv7.3 and 7.4 channels with highly differential PIP2 sensitivities, we localized a carboxy-terminal inter-helix linker as the primary site of PIP2 action. Point mutants within this linker in Kv7.2 and Kv7.3 identified a conserved cluster of basic residues that interact with the lipid using electrostatic and hydrogen bonds. Homology modeling of this putative PIP2-binding linker in Kv7.2 and Kv7.3 using the solved structure of Kir2.1 and Kir3.1 channels as templates predicts a structure of Kv7.2 and 7.3 very similar to the Kir channels, and to the seven-β-sheet barrel motif common to other PIP2-binding domains. Phosphoinositide-docking simulations predict affinities and interaction energies in accord with the experimental data, and furthermore indicate that the precise identity of residues in the interacting pocket alter channel–PIP2 interactions not only by altering electrostatic energies, but also by allosterically shifting the structure of the lipid-binding surface. The results are likely to shed light on the general structural mechanisms of phosphoinositide regulation of ion channels. 相似文献
18.
Schulze D Krauter T Fritzenschaft H Soom M Baukrowitz T 《The Journal of biological chemistry》2003,278(12):10500-10505
Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP) channels. Mutation of Arg-54 to the neutral glutamine (R54Q) and, in particular, to the negatively charged glutamate (R54E) impaired PIP(2) modulation of ATP inhibition, while mutation to lysine (R54K) had no effect. These data suggest that electrostatic interactions between PIP(2) and Arg-54 are an essential step for the modulation of ATP sensitivity. This N-terminal PIP(2) site is highly conserved in Kir channels with the exception of the pH-gated channels Kir1.1, Kir4.1, and Kir5.1 that contain a neutral residue at the corresponding positions. Introduction of an arginine at this position in Kir1.1 channels rendered the N-terminal PIP(2) site functional largely increasing the PIP(2) affinity. Moreover, Kir1.1 channels lose the ability to respond to physiological changes of the intracellular pH. These results explain the need of a silent N-terminal PIP(2) site in pH-gated channels and highlight the N terminus as an important region for PIP(2) modulation of Kir channel gating. 相似文献
19.
The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin 总被引:2,自引:0,他引:2
The activity of the amiloride-sensitive epithelial sodium channel (ENaC) is modulated by F-actin. However, it is unknown if there is a direct interaction between alpha-ENaC and actin. We have investigated the hypothesis that the actin cytoskeleton directly binds to the carboxyl terminus of alpha-ENaC using a combination of confocal microscopy, co-immunoprecipitation, and protein binding studies. Confocal microscopy of Madin-Darby canine kidney cell monolayers stably transfected with wild type, rat isoforms of alpha-, beta-, and gamma-ENaC revealed co-localization of alpha-ENaC with the cortical F-actin cytoskeleton both at the apical membrane and within the subapical cytoplasm. F-actin was found to co-immunoprecipitate with alpha-ENaC from whole cell lysates of this cell line. Gel overlay assays demonstrated that F-actin specifically binds to the carboxyl terminus of alpha-ENaC. A direct interaction between F-actin and the COOH terminus of alpha-ENaC was further corroborated by F-actin co-sedimentation studies. This is the first study to report a direct and specific biochemical interaction between F-actin and ENaC. 相似文献
20.
Grishin A Li H Levitan ES Zaks-Makhina E 《The Journal of biological chemistry》2006,281(40):30104-30111
To identify proteins that regulate potassium channel activity and expression, we performed functional screening of mammalian cDNA libraries in yeast that express the mammalian K(+) channel Kir2.1. Growth of Kir2.1-expressing yeast in media with low K(+) concentration is a function of K(+) uptake via Kir2.1 channels. Therefore, the host strain was transformed with a human cDNA library, and cDNA clones that rescued growth at low K(+) concentration were selected. One of these clones was identical to the protein of unknown function isolated previously as gamma-aminobutyric acid receptor-interacting factor 1 (GRIF-1) (Beck, M., Brickley, K., Wilkinson, H., Sharma, S., Smith, M., Chazot, P., Pollard, S., and Stephenson, F. (2002) J. Biol. Chem. 277, 30079-30090). GRIF-1 specifically enhanced Kir2.1-dependent growth in yeast and Kir2.1-mediated (86)Rb(+) efflux in HEK293 cells. Quantitative microscopy and flow cytometry analysis of immunolabeled surface Kir2.1 channel showed that GRIF-1 significantly increased the number of Kir2.1 channels in the plasma membrane of COS and HEK293 cells. Physical interaction of Kir2.1 channel and GRIF-1 was demonstrated by co-immunoprecipitation from HEK293 lysates and yeast two-hybrid assay. In vivo association of Kir2.1 and GRIF-1 was demonstrated by co-immunoprecipitation from brain lysate. Yeast two-hybrid assays showed that an N-terminal region of GRIF-1 interacts with a C-terminal region of Kir2.1. These results indicate that GRIF-1 binds to Kir2.1 and facilitates trafficking of this channel to the cell surface. 相似文献